

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 1

Alfabet Reference Manual

API Integration with
Third-Party Components

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 2

Documentation Version Alfabet 10.9.1

Copyright © 2013 - 2021 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
and/or its subsidiaries and or/its affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your
License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks
of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licen-
sors. Other company and product names mentioned herein may be trademarks of their respective owners.

This software may include portions of third-party products. For third-party copyright notices, license
terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of
Third Party Products". For certain specific third-party license restrictions, please refer to section E of the
Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright
and Trademark Notices of Software AG Products". These documents are part of the product documenta-
tion, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Software AG products provide functionality with respect to processing of personal data according to the
EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are documented in the
respective administration documentation.

http://softwareag.com/licenses

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 3

CONVENTIONS USED IN THE DOCUMENTATION

Convention Meaning

Bold Used for all elements displayed in the Alfabet interface including, for example, menu
items, tabs, buttons, dialog boxes, page view names, and commands.

Example: Click Finish when setup is completed.

Italics Used for emphasis, titles of chapters and manuals.

this

Example: see the Administration reference manual.

Initial Capitals Used for attribute or property values.

Example: The object state Active describes...

All Capitals Keyboard keys

Example: CTRL+SHIFT

File >
Open

Used for menu actions that are to be performed by the user.

Example: To exit an application, select File > Exit

< > Variable user input

Example: Create a new user and enter <User Name>. (Replace < > with variable data.)

This is a note providing additional information.

This is a note providing procedural information.

This is a note providing an example.

This is a note providing warning information.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 4

TABLE OF CONTENTS

Chapter 1: Configuring Integration Solutions 6

Chapter 2: General Configurations Valid for Multiple Integration Solutions 9
Configuring Server Variables for Integration and Interoperability Solutions 9
Configuring Use of Self-Signed Certificates for Integration Solutions 11

Chapter 3: Configuring Interoperability with Skype for Business Server® 12

Chapter 4: Configuring Interoperability with Microsoft Teams 14
Registering an App with Microsoft Azure 14
Configuring Access to Microsoft Teams in Alfabet 16
Enabling Snapshots of Alfabet Views to be Visible in Microsoft Teams 19

Chapter 5: Configuring Interoperability with Technopedia 20
Understanding the Mapping of Technopedia Products to Vendor Products in Alfabet 22
Configuring the XML Object TechnopediaConfig 27
Making the Technopedia Capability Available to the User Community 33
Updating Technopedia Products in Alfabet via the ADIF Import Scheme
ALFABET_TECHNOPEDIA_UPDATE 35

Chapter 6: Configuring Interoperability with CentraSite 39
Configuring the Class Model for Interoperability with CentraSite 40
Configuring Connections for CentraSite Interoperability 43
Configuring the Display of CentraSite Services in Alfabet 47
Configuring the Update of Alfabet Data to CentraSite 51
Importing CentraSite Data via ADIF Schemes 55

Chapter 7: Configuring Interoperability with webMethods API Portal 56
Overview of the Configuration Required for webMethods API Portal 57
Configuring the Class Model for Interoperability with webMethods API Portal 59
Configuring Connections and API Asset Mapping for webMethods API Portal 60
Configuring the Mapping of API Portal Resources to Business Data 63

Chapter 8: Configuring Interoperability with webMethods API Gateway 67
Overview of the Configuration Required for webMethods API Gateway 68
Configuring the Alfabet Class Model for Interoperability with webMethods API Gateway 69
Configuring Connections and API Asset Mapping for webMethods API Gateway 71
Configuring the Mapping of API Gateway Resources to Business Data 74

Chapter 9: Configuring Interoperability with Google's Apigee API Platform Tools 77
Overview of the Configuration Required for Interoperability with Apigee 78
Configuring the Class Model for Interoperability with Apigee 79
Configuring Connections and API Proxy Mapping for Apigee Integration 80

Sending Requests to Apigee via a Proxy Server 83
Creating Apigee Data Connections 84
Creating an ADIF Import Scheme for Import from Apigee 86

Chapter 10: Configuring the Creation/Export of Technical Services Based on WSDL and
OpenAPI Specification Files 89

Chapter 11: Configuring Integration of Data from Amazon Web Services 91

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 5

Configuring the Connection to Amazon Web Services 91
Sending Request to Amazon Web Services via a Proxy Server 93

Configuring Integration of Amazon Web Services Data into the Alfabet database 94

Chapter 12: Configuring Integration of Data Between ServiceNow and Alfabet 97
Configuring Integration of Data from ServiceNow 97

Configuring Data Transmission from ServiceNow to Alfabet 98
Configuring Integration of ServiceNow Data into the Alfabet Database 102
Changing an Existing Configuration for ServiceNow Integration 106

Configuring Integration of Alfabet Data Into ServiceNow 107
Defining Data to Export from the Alfabet database Via a Configured Report 108
Configuring Data Transmission from Alfabet to ServiceNow 111
Configuring the ADIF Export Scheme for Data Export to ServiceNow 114
Changing an Existing Configuration for ServiceNow Integration 116

Sending Requests to ServiceNow via a Proxy Server 117
Sending Requests to ServiceNow via an API Gateway 118

Chapter 13: Configuring Integration with Jira 119
Importing Jira Data to Alfabet 120

Configuring Connections to Import Jira Data to Alfabet 124
Importing Jira Data to Alfabet via ADIF Schemes 127

Exporting Alfabet Data to Jira 132
Configuring Connections and Mapping to Export Data from Alfabet to Jira 138
Configuring the Primary and Secondary Reports 142
Configuring Object Filter Reports 146
Configuring the ADIF Export Assistant to Export Alfabet Data to Jira 147
Configuring the Event Templates to Trigger the ADIF Export Schemes for Synchronization 151

Configuring Semantic Connections to Link and Synchronize Jira Projects with Alfabet Objects 152
Creating a Jira Connection for Project-Based Integration 156
Creating a Jira Connection for Architecture-Based Integration 160

Linking to and Synchronizing the Jira Project 164

Chapter 14: Configuring Interoperability with Microsoft Project 166
Configuring the Connections for Interoperability with Microsoft Project 167
Specifying a Wizard for Interoperability with Microsoft Project 170
Specifying Release Status for Interoperability with Microsoft Project 171

Chapter 15: Configuring Interoperability with a Translation Service 172

Appendix 1: ServiceNow Ressources Accessed by the Integration API 174

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 6

Chapter 1: Configuring Integration Solutions

Multiple interfaces are available in Alfabet that provide interoperability or integration with a variety of prod-
ucts and services. The implementation of an integration solution requires configuration of the interface.
The basic configuration is carried out primarily in XML objects available in Alfabet Expand. Much of the in-
terface will also depend on the configuration and execution of ADIF schemes for data exchange between
the external service/product and the Alfabet database.

The data will be checked prior to import for all integration solutions that require the execution of
an ADIF scheme, and characters that are not XML-compliant will be removed prior to import to
avoid data storage issues in the Alfabet database.

The following information is available:

• Configuring Integration Solutions

• General Configurations Valid for Multiple Integration Solutions

• Configuring Server Variables for Integration and Interoperability Solutions

• Configuring Use of Self-Signed Certificates for Integration Solutions

• Activating Interoperability with a Service Registry via the XML Object ServiceRegistryManager

• Configuring Interoperability with Skype for Business Server®

• Configuring Interoperability with Microsoft Teams

• Registering an App with Microsoft Azure

• Configuring Access to Microsoft Teams in Alfabet

• Enabling Snapshots of Alfabet Views to be Visible in Microsoft Teams

• Configuring Interoperability with Technopedia

• Understanding the Mapping of Technopedia Products to Vendor Products in Alfabet

• Configuring the XML Object TechnopediaConfig

• Making the Technopedia Capability Available to the User Community

• Updating Technopedia Products in Alfabet via the ADIF Import Scheme
ALFABET_TECHNOPEDIA_UPDATE

• Configuring Interoperability with CentraSite

• Configuring the Class Model for Interoperability with CentraSite

• Configuring Connections for CentraSite Interoperability

• Configuring the Display of CentraSite Services in Alfabet

• Configuring the Update of Alfabet Data to CentraSite

• Importing CentraSite Data via ADIF Schemes

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 7

• Configuring Interoperability with webMethods API Portal

• Overview of the Configuration Required for webMethods API Portal

• Configuring the Class Model for Interoperability with webMethods API Portal

• Configuring Connections and API Asset Mapping for webMethods API Portal

• Configuring the Mapping of API Portal Resources to Business Data

• Configuring Interoperability with webMethods API Gateway

• Overview of the Configuration Required for webMethods API Gateway

• Configuring the Alfabet Class Model for Interoperability with webMethods API Gateway

• Configuring Connections and API Asset Mapping for webMethods API Gateway

• Configuring the Mapping of API Gateway Resources to Business Data

• Configuring Interoperability with Google's Apigee API Platform Tools

• Overview of the Configuration Required for Interoperability with Apigee

• Configuring the Class Model for Interoperability with Apigee

• Configuring Connections and API Proxy Mapping for Apigee Integration

• Sending Requests to Apigee via a Proxy Server

• Creating Apigee Data Connections

• Creating an ADIF Import Scheme for Import from Apigee

• Configuring the Creation/Export of Technical Services Based on WSDL and OpenAPI Specification
Files

• Configuring Integration of Data from Amazon Web Services

• Configuring the Connection to Amazon Web Services

• Sending Request to Amazon Web Services via a Proxy Server

• Configuring Integration of Amazon Web Services Data into the Alfabet database

• Configuring Integration of Data Between ServiceNow and Alfabet

• Configuring Integration of Data from ServiceNow

• Configuring Data Transmission from ServiceNow to Alfabet

• Configuring Integration of ServiceNow Data into the Alfabet Database

• Changing an Existing Configuration for ServiceNow Integration

• Configuring Integration of Alfabet Data Into ServiceNow

• Defining Data to Export from the Alfabet database Via a Configured Report

• Configuring Data Transmission from Alfabet to ServiceNow

• Configuring the ADIF Export Scheme for Data Export to ServiceNow

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 8

• Changing an Existing Configuration for ServiceNow Integration

• Sending Requests to ServiceNow via a Proxy Server

• Sending Requests to ServiceNow via an API Gateway

• Configuring Integration with Jira

• Importing Jira Data to Alfabet

• Configuring Connections to Import Jira Data to Alfabet

• Importing Jira Data to Alfabet via ADIF Schemes

• Exporting Alfabet Data to Jira

• Configuring Connections and Mapping to Export Data from Alfabet to Jira

• Configuring the Primary and Secondary Reports

• Configuring Object Filter Reports

• Configuring the ADIF Export Assistant to Export Alfabet Data to Jira

• Configuring the Event Templates to Trigger the ADIF Export Schemes for
Synchronization

• Configuring Semantic Connections to Link and Synchronize Jira Projects with Alfabet Objects

• Creating a Jira Connection for Project-Based Integration

• Creating a Jira Connection for Architecture-Based Integration

• Linking to and Synchronizing the Jira Project

• Configuring Interoperability with Microsoft Project

• Configuring the Connections for Interoperability with Microsoft Project

• Specifying a Wizard for Interoperability with Microsoft Project

• Specifying Release Status for Interoperability with Microsoft Project

• Configuring Interoperability with a Translation Service

• Appendix 1: ServiceNow Ressources Accessed by the Integration API

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 9

Chapter 2: General Configurations Valid for Multiple Integration
Solutions

The features described in this section apply to multiple or all integration solutions.

The following configurations are general configurations:

• Configuring Server Variables for Integration and Interoperability Solutions

• Configuring Use of Self-Signed Certificates for Integration Solutions

• Activating Interoperability with a Service Registry via the XML Object ServiceRegistryManager

Configuring Server Variables for Integration and Interoperability
Solutions

The definition of server variables allows values for some XML attributes in the XML objects in the Integra-
tion Solutions folder in Alfabet Expand to be defined in the server alias configuration. Defining the values
in the server alias configuration instead of directly defining them in the XML object eases the propagation
of changes and enhances security. Values for server variables are stored encrypted in the server alias con-
figuration. The setting of server variables can be done either directly in the server alias configuration editor
or imported into the server variable in encrypted format using a command line utility.

A value for an XML attribute can either be defined as a string directly in the XML element or via a server var-
iable. It is not possible to define a value with a server variable written as part of a string. The complete value
of the XML element in the XML object must be substituted with a server variable. In an XML object, the
server variable definition must be specified with the equal symbol followed by the value to be assigned to
the XML attribute in double quotes. For example: <XML attribute>="$SQLSERVER". The server variable is
referenced in the relevant XML attribute as: $<server variable name>. For example, a server variable called
SQLSERVER is referenced as $SQLSERVER in the XML object.

Server variables are defined in the Alfabet Administrator. To define a server variable to use in XML objects:

1) In the Alfabet Administrator, click the Alfabet Aliases node in the Administrator explorer.

2) In the table on the right, select the server alias that you want to define a server variable for and

click the Edit button. The alias editor opens.

3) Go to the Variables tab and click the New button. A dialog box opens.

4) In the Variable Name field, enter a unique name for the server variable.

The server variable name may only contain letters (English alphabet), numbers, and the
underscore symbol.

5) In the Variable Value field, specify the value to use for the server variable.

If the variable value contains a special character according to XML standards (for exam-
ple: &, %, ;,<,>), these characters must be replaced by with their respective XML compli-
ant code (for example: & for &)

6) Click OK to save your changes. The server variable definition appears in the list of server variables.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 10

To edit or delete the server variable, select the server variable in the table and click the
Edit or Delete button below the table.

7) Click OK to save your changes and close the editor. The server variable definition is now available
in the server alias configuration and can be used in the relevant XML objects available in the
Integration Solutions folder in Alfabet Expand.

For an existing server alias configuration, a server variable can be changed or added via the command line
tool AlfaAdministratorConsole.exe with the following command line:

AlfaAdministratorConsole.exe -msalias <alias name> -editvariables -variable
<variable name> -value <variable value>

For an existing server alias configuration, a server variable can be deleted via the command line tool
AlfaAdministratorConsole.exe with the following command line:

AlfaAdministratorConsole.exe -msalias <alias name> -editvariables -variable
<variable name>

The table below displays the command line options:

Command Line
Option

Manda-
tory/
Default

Explanation

-editvariables Manda-
tory

To change the variable definitions in the server alias configuration, the
command line must contain the parameter:

-editvariables

-msalias <alias
name>

Manda-
tory

Enter the server alias name as specified in the AlfabetMS.xml config-
uration file for access to the database.

-msaliasesfile
<Alfabet configu-
ration file path>

Optional If the AlfabetMS.xml configuration file that contains the specification
of the alias is not located in the same directory as the executable, the
path to the AlfabetMS.xml file must be specified with this parameter.

-variable <vari-
able name>

Manda-
tory

Specify the name of the server variable.

If a server variable with the specified name does not exist in the server
alias, a new server variable will be created.

If a server variable with the specified name exists in the server alias,
the value will be changed to the value defined with -value.

To delete an existing server variable, specify the existing server varia-
ble name with -variable and do not add a -value definition to the
command line.

The variable name can only contain letters (of the English al-
phabet), numbers and underscore.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 11

Command Line
Option

Manda-
tory/
Default

Explanation

-value <variable
value>

Optional Specify the value for the server variable.

To delete an existing server variable, specify the existing server varia-
ble name with -variable and do not add a -value definition to the
command line.

The following characters are not allowed in server variable
values: " < >

These characters can be written as HTML code in the server
variable value:

• > for >

• < for <

• " for "

Configuring Use of Self-Signed Certificates for Integration Solu-
tions

For integration solutions based on web services, self-signed certificate validation can be used on HTTPS
connections.

This requires the following configuration:

1) Copy the self-signed certificates from the third-party web service to a local folder that the Alfabet
Web Application has access permissions to.

2) Open the Alfabet Administrator.

3) In the explorer, click Alfabet Aliases. The right pane displays a list of all available alias
configurations.

4) In the table, select the alias configuration of the Alfabet Web Application.

5) In the toolbar, click the Edit button. You will see the editor in which you can edit the alias
configuration.

6) Open the Server Settings > Security tab.

7) Enter the path to the folder containing the self-signed certificates in the field Path for Self-
Signed Public Certificate Files.

8) Click OK to save your changes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 12

Chapter 3: Configuring Interoperability with Skype for Business
Server®

Integration with the Skype for Business Server® is available in order to support Skype messages and audio
and video calls between users in the Alfabet user community. The connection may be server-based or
browser-based.

If interoperability with Skype for Business Server® is configured for your enterprise and Skype is permissi-
ble for a user, a Skype status symbol will be displayed next to the user's name in the Attributes section of
object profiles/object cockpits as well as previews indicating their current Skype status. The user can click
the Skype status icon to open the Skype screen and contact the authorized user of an object should ques-
tions arise. For more information about using the Skype capability, see the section Skyping with Your Col-
leagues in the reference manual Getting Started with Alfabet.

Interoperability with Skype will only be available for users for which a valid Skype name and
Skype ID has been specified. This can be defined by a user in the Personal Info option in the
< Alfabet User Name > menu in the Alfabet user interface or via the Skype Name and Skype ID
attributes in the User editor in the Users Administration functionality. For more information,
see the section Creating a User in the reference manual User and Solution Administration.

Please note that the contact status must be selected to be displayed for the user in the Contacts
List section of the Skype for Business - Options editor in the Skype for Business application. If
the contact status is not enabled in the Skype for Business application, the Skype presence sta-
tus will not be displayed for the user in Alfabet.

The XML object AlfaSkypeIntegrationConfig allows you to activate the Skype for Business Server®

capability as well as to configure a master user to that it is allowed to query the availability status of Skype
users. If the server is not set up with a direct connection to the Skype server, the master user’s Skype per-
missions will be used to query the availability status of other users.

To configure the XML object AlfaSkypeIntegrationConfig:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click AlfaSkypeIntegrationConfig and select Edit XML.... The XML object

AlfaSkypeIntegrationConfig opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template in the attribute grid of the XML object AlfaSkypeIntegration-
Config. The template can be copied to the XML object to avoid manually writing the
configuration. In this case, you would edit the XML elements described below. The fol-
lowing information describes a configuration from scratch.

3) There are two different methods to specify the interoperability with Skype.

• The XML element SkypeInfo allows a server-based connection to be established with Skype
for Business Service. This method requires an administrative user account to be established.

• Add a child XML element SkypeInfo to the root XML element
AlfaSkypeIntegrationConfig.

• IsActive: Specify "true" to activate interoperability with the Skype for
Business Service. Specify "false" to deactivate interoperability with the Skype
for Business Service. The Skype ID and Skype Domain attributes will only be

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 13

displayed in the User editor and in Users Administration functionality if the
XML attribute IsActive is set to "true".

• SkypeAdminUserId: Specify the Skype user ID for an administrative user that is
permitted to communicate with the Skype server to retrieve the Skype status
for the various users that are enabled to use Skype from within the Alfabet user
interface.

• SkypeAdminUserPwd: Specify the Skype user password for the administrative
user.

• SkypeDomain: Specify the domain if the server running Alfabet is outside of the
domain for running Skype for Business Server.

• RefreshSeconds: Specify the number of seconds to refresh the cache of the
presence status of the Skype users. The default is 60.

• The XML element SkypeWebSDK allows a Web browser-based connection to be established
that uses the Wed SDK from Skype to be accessed at runtime. This alternative method to
establish connection to Skype is not recommended because it will require the user to key in
Skype account credentials on every interaction initiated from the Alfabet user interface.

• Add a child XML element SkypeWebSDK to the root XML element
AlfaSkypeIntegrationConfig.

• IsActive: Specify "true" to activate interoperability with the Skype for
Business Server. Please note the following:

The download of the Skype SDK library will be limited to Alfabet installations with activated Skype integration.

The following libraries will be downloaded if the XML attribute IsActive is set to "true".
//ajax.aspnetcdn.com/ajax/jQuery/jquery-1.10.2.min.js and
//swx.cdn.skype.com/shared/v/1.2.15/SkypeBootstrap.min.js. The files extensions are subject to the
specification of the black list/white list of file extensions defined in the XML object FileExtensionLists.

Ensure that the file extension.js is not listed in the blacklist defined in
the XML object FileExtensionLists. If a whitelist is specified the XML
object FileExtensionLists, then the file extension.js must be in-
cluded as permissible file extensions. For more information, see the
section Specifying the Permissible File Extensions for Upload-
ing/Downloading Files in the reference manual Configuring Alfabet
with Alfabet Expand.

The Skype ID and Skype Domain attributes will only be displayed in the User editor and in Users Administration
functionality if the XML attribute IsActive is set to "true".

• RefreshSeconds: Specify the number of seconds to refresh the cache of the
presence status of the Skype users. The default is 60.

4) In the toolbar, click the Save button to save the XML definition.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 14

Chapter 4: Configuring Interoperability with Microsoft Teams

Communication about Alfabet objects can be enabled via integration with Microsoft® Teams®. The inte-
gration with Microsoft Teams allows communication about Alfabet objects such as applications, business
capabilities, or strategies, for example, to concur synchronously in Microsoft Teams and in Alfabet. If inte-
gration with Microsoft Teams is configured, the buttons in the Collaboration Panel and My Collaboration
Topics functionality will display icons for Microsoft Teams-based collaboration.

The Collaboration capability in Alfabet has been revised and communication about Alfabet objects can be
enabled via integration with Microsoft Teams. The integration with Microsoft Teams offers a new collabora-
tion platform that allows communication about Alfabet objects such as applications, business capabilities,
or strategies, for example, to concur synchronously in Microsoft Teams and in Alfabet. If integration with
Microsoft Teams is configured, the buttons in the Collaboration Panel and My Collaboration Topics func-
tionality will display icons for Microsoft Teams-based collaboration.

Depending on the configuration, an Alfabet user can open a predefined Microsoft Teams channel or create
a new Microsoft Teams channel for an Alfabet object in the Collaboration Panel in the object profile of the
relevant object and specify the initial set of users that may collaborate about the object. Additional users
with Microsoft Teams ID can be added to the discussion at any time with the Microsoft Teams client. Posts
about the object that are made in Alfabet will be displayed in Microsoft Teams and likewise posts made in
Microsoft Teams about the Alfabet object will be displayed in the Collaboration Panel in the object profile
of the relevant object in. In this way, users can reply to each other's posts from both Microsoft Teams and
the Alfabet user interface.

Furthermore, the online status of an Alfabet user with a Microsoft Teams ID will be displayed next to the
user's name in the Attributes section of previews, object profiles, and object cockpits. Users can click the
online status icon and open the Microsoft Teams chat and call the person. When configured, the Microsoft
Teams configuration will supersede any existing interoperability with a Skype © for Business Server.

For information about working with the Collaboration Panel and My Collaboration Topics functionality if
the interoperability with Microsoft Teams has been implemented, see Communicating with Your Colleagues
via the Collaboration Functionality in the reference manual Getting Started with Alfabet.

The following configuration is required to implement interoperability with Microsoft Teams:

• Registering an App with Microsoft Azure

• Configuring Access to Microsoft Teams in Alfabet

• Enabling Snapshots of Alfabet Views to be Visible in Microsoft Teams

Registering an App with Microsoft Azure

An app must be registered with Microsoft Azure to allow access of Alfabet to Microsoft Teams. For infor-
mation about how to register an app, see the Microsoft help available a t https://docs.microsoft.com/en-
us/azure/active-directory/develop/quickstart-register-app

After having registered the app, the app must be configured in Microsoft Azure as follows:

1) Click the app in the list of apps to open the app details view.

2) Go to Certificates & Secrets and create a new secret. Store the secret for later use in Alfabet
configuration and the secret will later not be visible any longer in Microsoft Azure.

3) Go to API Permissions and select Microsoft Graph.

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 15

4) Assign at least the following permissions to the app:

Application Permissions:

• Team.Create

• Team.ReadBasic.All

• Channel.ReadBasic.All

• Channel.Create

• TeamsTab.Create

• Channel.ReadBasic.All

• ChannelMember.Read.All

• ChannelMember.ReadWrite.All

• TeamMember.Read.All

• Team.ReadBaisc.All

• TeamMember.ReadWrite.All

• TeamMember.Read.All

• User.Read.All

UserReadAllEnabled: This permission is required to read the Microsoft internal
user GUID from Microsoft Teams via the Microsoft Graph API. The user GUID is re-
quired to read the user's status and to add users to a Teams Channel.

If your company's security policy does not allow to set this permission, you can al-
ternatively read the user GUIDs for all users via other mechanisms from Microsoft
Teams and write them in the object class property TeamsUserInternalId of the
object class Person. In the next configuration step described in the following, hte
XML attribute UserReadAllEnabled in the XML object MicrosoftTeamsInte-
grationConfig must then be set to false to disable direct reading of the value
from Microsoft Teams and switch to reading the value from the Alfabet database.

Delegated Permissions:

• ChannelMessage.Read.All

• ChannelMessage.Send

• Presence.Read.All

• User.Read

• Offline_access

5) Go to Authentication and add a Web platform with a Redirect URI pointing back to your Alfabet
installation. The Redirect URI must end with /Home.aspx.

For example, if the Alfabet server URL is https://CompanyHost/Alfabet the Redi-
rect URI must be defined as https://CompanyHost/Alfabet/Home.aspx.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 16

6) In the Implicit grant section, set the checkmarks for the Access tokens and ID tokens options.

For the configuration on Alfabet side you will need the information about the secret and the Essentials
displayed in the Overview page.

Configuring Access to Microsoft Teams in Alfabet

Open the configuration tool Alfabet Expand and do the following:

1) In the Presentations tab, expand the nodes XML Objects > IntegrationSolutions.

2) Right-click the MicrosoftTeamsIntegrationConfig node and select Edit XML.

3) Enter the following XML code or alter the existing code. The meaning of the XML attributes and
XML elements is described below the code example:

Instead of directly defining sensible information like Azure access data directly in the
XML object, you can use server variables for the definition of XML attributes. Server vari-
able are substituted with values defined for each variable in the server alias of the
Alfabet Web Application. Server variables are stored encrypted in the server alias config-
uration. They can be set via a command line tool, enabling an Azure administrator to set
the values without providing the information to the administrator of the Alfabet compo-
nents. For more information about server variables, see Configuring Server Variables for
Integration and Interoperability Solutions.

<MicrosoftTeamsIntegrationConfig IsActive="true"
AllowedClasses="Application,Domain,Project" MaxMessagesReadInRequest="50"
MaxRepliesReadInRequest="7">

<Proxy url="" user="" psw="" domain=""/>

<MicrosoftTeamsIntegrationConfig

Name="TeamsConfig"

AllowedClasses="Application,Demand,BusinessProcess,OrgaUnit"

MaxMessagesReadInRequest="5"

MaxRepliesReadInRequest="10"

IsActive="true"

TeamsCollaborationEnabled="true"

TeamsPresenceEnabled="true"

PresenceRefreshSeconds="30"

Timeout="90"

AdminUserId="$TeamsAdminUser"

TenantID="$TeamsTenantID"

ClientID="$TeamsClientID"

ClientSecret="$TeamsClientSecret">

<SelectableTeam ID="$TeamsDemoTeamGUID" />

<ChannelSettings CreateTab="true"/>

<GroupSettings CanCreateGroup="false"/>

</MicrosoftTeamsIntegrationInfo>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 17

</MicrosoftTeamsIntegrationConfig>

• XML attributes of the XML element MicrosoftTeamsIntegrationConfig:

• IsActive: Set to true to activate Microsoft Teams integration.

• AllowedClasses: Enter a comma separated list of Alfabet object classes for that a
discussion about object via Microsoft Teams shall be available.

• MaxMessagesReadInRequest: Enter the maximum number of messages in a Microsoft
Teams team channel that will be displayed directly in Alfabet in the Collaboration capability.
If more messages are available in the Microsoft Teams team channel, only the most recent
messages up to the defined maximum will be displayed.

• MaxRepliesReadInRequest: Enter the maximum number of replies to a message that shall
be displayed directly in Alfabet in the Collaboration capability. If more replies are available for
a message, only the most recent replies up to the defined maximum will be displayed.

XML attributes of the XML element MicrosoftTeamsIntegrationInfo:

• Name: Enter an Alfabet internal name for the connection to Mocrisift Teams. The name must
not include special characters or whitespaces.

• IsActive: Set to true to activate the connection. Multiple XML elements
MicrosoftTeamsIntegrationInfo can be added to the XML element
MicrosoftTeamsIntegrationConfig, for example to define the connections to different
instances of Microsoft Teams in a test environment and in a production environment. But only
one of the XML elements MicrosoftTeamsIntegrationInfo can be set to activated at a
time.

• IsMultitenant: Apps registered with Microsoft Azure can either be single-tenant and
accept only sign-ins from users in the Azure Active Directory (Azure AD) tenant the app is
created for, or multi-tenant and accept sign-ins from users in any Azure AD tenant. If you
have configured your registered Alfabet app to be multi-tenant, you must set this XML
attribute to true.

• TeamsCollaborationEnabled: Set to true to enable integration of Microsoft Teams for the
Collaboration capability. If set to false, the Alfabet internal Collaboration capability will be
available to the users.

• TeamsPresenceEnabledSet to true to enable display of the Microsoft Teams availability
status in Alfabet everywhere the user information is displayed. The availability status
information is displayed in the same way as the Skype® availability status that is displayed if
integration with Skype is implemented. It is therefore not possible to integrate with both
Skype and Microsoft Teams. If both integration solutions are configured and activated, the
Skype integration will be ignored.

• PresenceRefreshSeconds: Define the minimum number of seconds between refresh of the
Microsoft Teams user availability status information on the Alfabet user interface.

• UserReadAllEnabled: This attribute is by default set to true and the Microsoft internal user
GUID is read from Microsoft Teams via the Microsoft Graph API. This requires the
User.Read.All application permissions for the registered Alfabet app. The user GUID is
required to read the user's status and to add users to a Teams Channel. Only set the attribute
to false if you have not granted the User.Read.All access permissions for the registered
app. You must then read the user GUIDs for all users via other mechanisms from Microsoft
Teams and write them in the object class property TeamsUserInternalId of the object class
Person.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 18

• Timeout: Enter the maximum time in seconds that the Alfabet Web Application will wait for an
answer when sending a request to the Microsoft Graph engine handling the incoming
requests on Microsoft side.

• AdminUserId: Enter the Microsoft Teams user ID of a user with administrative rights in
Microsoft Teams. This user will be the owner of all newly created Microsoft Teams Teams.

• TenantID: Enter the Microsoft Azure Tenant ID (also called Directory ID) of your registered
application.

In Microsoft Azure, you can find the Tenant ID in the Overview tab for your regis-
tered application.

• ClientID: Enter the Microsoft Azure Client ID (also called Application ID) of your registered
application.

In Microsoft Azure, you can find the Client ID in the Overview tab for your registered
application.

• ClientSecret: Enter the Microsoft Azure Client Secret of your registered application.

The generation of the client secret is part of the configuration of the registered ap-
plication in Microsoft Azure described in the section Registering an App with Mi-
crosoft Azure.

XML attributes of the XML element SelectableTeam: You can predefine Teams in Microsoft Teams

that shall be used for the communications about objects in Alfabet. The user starting a new
conversation in the collaboration panel on the Alfabet user interface can select one of the Teams via
a drop-down list. In addition, the user might see an option to create new Teams. This option can be
activated or deactivated with the XML element GroupSettings. For each Team that a user shall be

able to start a conversation about an Alfabet object in, add an XML element SelectableTeam to

the XML element MicrosoftTeamsIntegrationInfo and define the following XML attribute for it:

• ID: Enter the ID of the Team.

To read the ID of the Team in Microsoft Teams, click on the elipsis to the right of the
Team name and select Get link to team. Copy the link from the window that opens
and past it into a text editor. In the link, the ID of the team is the string between
groupId= and &tenantId.

XML attributes of the XML element GroupSettings

• CanCreateGroup: Set to true if users shall be able to create new Microsoft Teams Teams
when working in the collaboration panel on the Alfabet user interface. Set to false if the user
shall only be able to select a Team defined in a SelectableTeam XML element.

XML attributes of the XML element ChannelSettings:

• CreateTab: Set to true if for each newly created Team Channel a tab with the name of the
object shall also be generated in the channel.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 19

Users opening the tab will see the view about the object in Alfabet with up-to-date information.

Please note that access for anonymous users must be granted by selecting the Al-
low Anonymous User checkbox in the Server Settings > Security tab of the
server alias configuration of the Alfabet Web Application.

Enabling Snapshots of Alfabet Views to be Visible in Microsoft
Teams

Snapshots of the view the user is working in when opening the collaboration panel can be included into
conversations and replies. In Microsoft Teams, snapshots are included into Team Channels including a link
that opens the view the snapshot has been taken from in Alfabet.

This feature is executed via the Alfabet RESTful services. Authentication for the RESTful service call will be
performed using the user configured for execution of self-reflective events. RESTful service permission
Has View Snapshot Access must be activated for both the Alfabet Web Application and the user for self-
reflective events.

All configuration steps required for activation of the RESTful services as well as the configuration of the
user for self-reflective events is described in detail in the reference manual Alfabet RESTful API.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 20

Chapter 5: Configuring Interoperability with Technopedia

Software AG provides an interface to the Technopedia® repository of software and hardware products. The
Technopedia capability allows vendor products to be captured in a standardized manner and the technol-
ogy information to be aligned across the enterprise. The catalog of structured information about the IT in-
frastructure ensures a unified language and discipline to manage and plan the technology portfolio. With
consistent naming and standardized data, the complexity of the IT landscape can be reduced, overlapping
technologies eliminated, and existing and known technologies reused. If interoperability with Technopedia
is supported by your enterprise, Alfabet users will be able to create vendor products in Alfabet based on
Technopedia software products and/or hardware products.

Technopedia® has a two-level taxonomy comprised of product categories and sub-categories that contain
the Technopedia products. Software AG does not own the Technopedia® taxonomy and using the Techno-
pedia® taxonomy may result in a structure that is different from your enterprise's technology domain
structure. Typically, the entire repository of Technopedia® product categories would be imported to
Alfabet. Existing vendor product categories already defined in Alfabet will remain in the Alfabet database
but will not be displayed in the Technopedia selector available in the Alfabet user interface that allows us-
ers to import Technopedia hardware and software products. The top level of the Technopedia® product
categories will be imported to the top level of the vendor product hierarchy and subordinate categories will
be displayed below their parent vendor product category.

The imported vendor product categories will initially have no vendor products assigned to them. In other
words, the vendor products must be explicitly created based on the software/hardware product in the
Technopedia repository. The software and hardware products in the Technopedia® repository can be se-
lected on a category-by-category basis in order to create vendor products in Alfabet. The vendor products
that are created based on Technopedia products are saved to the Alfabet database and can be further de-
fined as needed. When the new vendor product is created, the vendor defined for that Technopedia product
will be automatically assigned to the new vendor product in Alfabet. If the vendor does not already exist in
the Alfabet database, it will be created in Alfabet along with the new vendor product. If an existing vendor
product is already mapped to a Technopedia software or hardware product and the user selects the same
Technopedia product and its id property matches the TP_ID property of the existing vendor product, then
the existing vendor product will be updated and a new vendor product will not be created.

This documentation primarily describes the creation of vendor products based on Technopedia
software and hardware products. However, some enterprises may prefer to implement the
Technopedia capability to create components rather than vendor products. This will depend on
the methodology implemented in your enterprise. Please note the following regarding using
components instead of vendor products:

• The Technopedia® product categories will be mapped to component categories and the
hardware and software products will be mapped to components.

• The object class Component must be specified in the XML attribute ClassMapping in the

XML object TechnopediaConfig.

• For each component created in Alfabet based on a Technopedia software of hardware
product, an object in the object class VendorProduct will first be created and then an
object in the object class Component will be created. For more information, see the
section Understanding the Mapping of Technopedia Products to Vendor Products in
Alfabet .

• The relevant page views must be made available to the user community as described in
the section Making the Technopedia Capability Available to the User Community.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 21

• The predefined ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE is only relevant for
the update of Alfabet vendor products and ICT objects. You must configure an ADIF
import scheme in order to synchronize Alfabet components with the current information
in Technopedia.

A subscription concept can be implemented for ICT objects that are based on Technopedia products in or-
der to simplify the maintenance of the enterprise's technology catalog. If the ICT object is subscribed to the
Technopedia product that it is based on, vendor products can be automatically created and maintained for
all relevant release versions of the Technopedia product that the ICT object is based on. To implement the
subscription concept for an ICT object, the Is Subscribed checkbox must be selected in the Technopedia
tab of the ICT Object editor. The Is Subscribed checkbox specifies that the ICT object has a subscription
to the Technopedia product that it is based on. The release version level (All Releases, Major Releases, Mi-
nor Releases) of the Technopedia product that shall be used to create the vendor products must be speci-
fied in the Subscription Level field. The ADIF job ALFABET_TECHNOPEDIA_UPDATE must be executed by a
user with an administrative user profile in order to create the vendor products. Vendor products will be cre-
ated for all relevant release versions of the Technopedia product that the ICT object is based on. The ven-
dor products will be added to the Vendor Products page views for the ICT object they are associated with.

Vendors can also be created in Alfabet based on Technopedia manufacturers.

The configuration of the Alfabet solution to interface with the Technopedia API as well as a sub-
scription to Technopedia services is required in order to access the Technopedia repository and
create vendor products based on the software products and hardware products stored in Tech-
nopedia.

The XML object TechnopediaConfig allows you to activate the Technopedia® capability as well as to

configure the login information for the Technopedia service. Furthermore, you can configure information
about the selectors in Alfabet used to find Technopedia products, how to map the lifecycle information of
Technopedia products to the object class VendorProduct, and which Technopedia attributes to map to
custom object class properties in Alfabet configured for the object classes VendorProduct, Component,
ICT Object, and Vendor.

Data is requested from Technopedia via a RESTful service call sending a GET request to the following Tech-
nopedia APIs:

• For software: /api/v1/software_extended/

• For hardware: /api/v1/hardware_extended/

If your enterprise plans to base new vendor products on both hardware products and software
products from Technopedia, then it is recommended that object class stereotypes are config-
ured for the object class VendorProduct. For more information about configuring object class
stereotypes, see the section Configuring Object Class Stereotypes for Object Classes in the ref-
erence manual Configuring Alfabet with Alfabet Expand.

A predefined ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE is available to update the
vendor products, vendor product categories, ICT objects, and vendors that are based on Tech-
nopedia products with the current data in the Technopedia repository. When executed, the ADIF
import scheme reads the configuration specified in the XML object TechnopediaConfig. For
more information about updating the vendor products and vendors based on Technopedia prod-
ucts as well as the criteria that must be met for the update, see the section Updating Technope-
dia Products in Alfabet via the ADIF Import Scheme ALFABET_TECHNOPEDIA_UPDATE.

The following information is available:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 22

• Understanding the Mapping of Technopedia Products to Vendor Products in Alfabet

• Configuring the XML Object TechnopediaConfig

• Making the Technopedia Capability Available to the User Community

• Updating Technopedia Products in Alfabet via the ADIF Import Scheme
ALFABET_TECHNOPEDIA_UPDATE

Understanding the Mapping of Technopedia Products to Vendor
Products in Alfabet

This section provides details about how Technopedia classes are mapped to Alfabet object classes and how
the attributes of these Technopedia classes are mapped to the standard object class properties for the
classes VendorProduct, Component, ICT Object, and Vendor. Custom properties are mapped as

specified for the relevant object class in the XML element ClassMapping in the XML object Technopedi-
aConfig.

The Technopedia classes are mapped as follows to Alfabet object classes:

Technopedia Class Alfabet Object Class

software_extended VendorProduct, Component

hardware_extended VendorProduct, Component

manufacturer Vendor

taxonomy2012 VendorProductCategory, ComponentCategory, ICTObjectCategory

sw_product ICTObject

hw_product ICTObject

The following information describes how the attributes of these Technopedia classes are mapped to the
standard object class properties for the classes VendorProduct, Component, ICT Object, and Ven-
dor.

The information below only describes mapping to the Alfabet object classes VendorProduct,
Component, ICT Object, and Vendor. Please note the following if your enterprise maps Tech-
nopedia software of hardware products to the object class Component:

• For each component created in Alfabet based on a Technopedia software of hardware
product, an object in the object class VendorProduct will first be created and then an
object in the object class Component will be created. In other words, whenever a

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 23

component is created based on a Technopedia product, two objects (a vendor product and
a component) will be added to the Alfabet database.

• The vendor product is the base object for the new component and the component will
have a reference to the vendor product. The following object class properties will be
copied from the vendor product to the component: Name, Version, StartDate,
EndDate, Vendor, and TP_CATEGORY. If the object class property TP_CATEGORY is
specified for the vendor product, then the system will try to find a component category
object with the same ID and set this as the component category of the component.

• The predefined ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE will not update
components. You must configure an ADIF import scheme in order to synchronize
components in Alfabet with the current information in Technopedia.

Only properties of the type String are supported when mapping Technopedia properties to
Alfabet properties.

Technope-
dia Class

Technopedia Attrib-
ute

Alfabet
Object
Class

Alfabet Object Class Property

soft-
ware_ex-
tended

 Vendor-
Product

 id TP_ID

Please note that if a class key specifies the TP_ID
property for the object class VendorProduct and
vendor products are imported with duplicate values
for the Technopedia IDs (Technopedia id attribute),
a class key violation will occur. If this occurs, the er-
ror will be written to the log file and the duplicate
vendor product will be skipped and will not be im-
ported to the Alfabet database.

 product_name Name

 version Version

 product_alias Alias

 suit_name Suite

 edition Edition

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 24

Technope-
dia Class

Technopedia Attrib-
ute

Alfabet
Object
Class

Alfabet Object Class Property

 manufacturer Vendor

 sub_category TP_SubCategory

 cat_taxon-
omy2012_id

 TP_CATEGORY

 general_availabil-
ity_date

 StartDate

 end_of_life_date
and obsolete_date

 EndDate, whereby the end date is the maximum of
either end_of_life_date or obsolete_date.

In order to avoid issues with the display of lifecycle
charts in Alfabet, date fields will remain empty if the
Technopedia products have the dates 1.1.1900 and
31.12.2999.

hard-
ware_ex-
tended

 Vendor-
Product

 id TP_ID

Please note that Technopedia constructs the id
based on a concatenation of model_id+prod-
uct_id.

 product Name

 model Version

 manufacturer Vendor

If the predefined ADIF scheme ALFABET_TECHNO-
PEDIA_UPDATE is executed, a new vendor will be
automatically created in the Alfabet database for
any vendor product that is updated based on a
Technopedia hardware product that does not have a
value specified for the Manufacturer property.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 25

Technope-
dia Class

Technopedia Attrib-
ute

Alfabet
Object
Class

Alfabet Object Class Property

 cat_taxon-
omy2012_id

 TP_CATEGORY

 general_availabil-
ity_date

 StartDate

 last_availabil-
ity_date and obso-
lete_date

 EndDate, whereby the end date is the maximum of
either last_availability_date or obso-
lete_date.

In order to avoid issues with the display of lifecycle
charts in Alfabet, date fields will remain empty if the
Technopedia products have the dates 1.1.1900 and
31.12.2999.

manufac-
turer

 Vendor

 manufacturer Name

 symbol ShortName

 description Description

 country Country

 city City

 street Street

 zip Zip

 email Email

 fax Fax

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 26

Technope-
dia Class

Technopedia Attrib-
ute

Alfabet
Object
Class

Alfabet Object Class Property

 phone Phone

 website Website

sw_prod-
uct

 IC-
TObject

 cat_sw_product_id TP_ID

 product_name Name

 manufacturer Vendor

If the predefined ADIF scheme ALFABET_TECHNO-
PEDIA_UPDATE is executed, a new vendor will be
automatically created in the Alfabet database for
any vendor product that is updated based on a
Technopedia hardware product that does not have a
value specified for the Manufacturer property.

 cat_taxon-
omy2012_id

 TP_CATEGORY

 create_date StartDate

hw_prod-
uct

 IC-
TObject

 cat_hw_product_id TP_ID

 product_name Name

 manufacturer Vendor

If the predefined ADIF scheme ALFABET_TECHNO-
PEDIA_UPDATE is executed, a new vendor will be
automatically created in the Alfabet database for
any vendor product that is updated based on a

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 27

Technope-
dia Class

Technopedia Attrib-
ute

Alfabet
Object
Class

Alfabet Object Class Property

Technopedia hardware product that does not have a
value specified for the Manufacturer property.

 cat_taxon-
omy2012_id

 TP_CATEGORY

 create_date StartDate

Configuring the XML Object TechnopediaConfig

The XML object TechnopediaConfig allows you to activate the Technopedia® capability as well as to

configure the login information for the Technopedia service. Furthermore, you can specify the selectors in
Alfabet used to find Technopedia products, how to map the lifecycle information of Technopedia products
to the object class VendorProduct (or its object class stereotypes), and which Technopedia attributes to
map to custom object class properties in Alfabet configured for the object classes VendorProduct and
Vendor.

Please note that only the mapping of properties of the type String is supporting when mapping
Technopedia properties to Alfabet properties.

Please note that server variables can be used in the XML object TechnopediaConfig to read
the value of the XML attribute at runtime from the server alias configuration of the Alfabet Web
Application when a connection to Technopedia is established. For information about server varia-
bles, see Configuring Server Variables for Integration and Interoperability Solutions.

To edit the XML object TechnopediaConfig:

1) Go to the Presentation tab, expand the XML Objects folder, and expand by the Integration
Solutions folder.

2) Right-click TechnopediaConfig and select Edit XML.... The XML object TechnopediaConfig

opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template in the attribute grid of the XML object TechnopediaConfig.
The template can be copied to the XML object to avoid manually writing the configura-
tion. In this case, you would edit the XML elements described below. The following infor-
mation describes a configuration from scratch.

3) Specify the following XML attributes below the root XML element TechnopediaConfig:

• active: Enter "true" to activate interoperability with Technopedia. If the attribute active is
set to "true", the menu options to import Technopedia categories and create new vendor
products based on Technopedia products will be available in the relevant views. For more

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 28

information about which views are relevant for the Technopedia capability, see the section
Making the Technopedia Capability Available to the User Community.

• service: Enter the scheme, host, and port of the URL targeting the Technopedia server used
as the end point to retrieve information from Technopedia. This is usually
http://api.technopedia.com.

• api: Specify the URL path for the end point to retrieve information from Technopedia. This
typically targets the Technopedia server used as the end point to retrieve information from
Technopedia. This is usually /api/v1/.

• authorization: Enter the string used to authorize the RESTful API call to the Technopedia
server. You must obtain a user name and key from Technopedia. The string should appear as
follows: apikey xxxlicence:0123456890abcdef.

• data_portion: Enter an integer between 10-1000 to be used as a parameter in RESTful API
calls to restrict the number of returned records. The recommended value is 50. Please note
that an excessively high number will impact performance.

• search_limit: Enter an integer between 10-1000 to be used to determine the maximum
number of records returned in the selector used to find Technopedia products in the Alfabet
interface. The recommended value is 300. Please note that an excessively high number will
impact performance.

• category_source: Specify whether the product categories in the Technopedia (Sub-)
Category field in the selector are populated with the Technopedia categories from the
Alfabet database or are populated via a separate service call with the Technopedia categories
in the Technopedia repository. Enter either "ALFABET" to populate the Technopedia (Sub-)
Category field in the selector with vendor product categories/component categories from
the Alfabet database or enter "TECHNOPEDIA" to populate the product categories via a
separate service call to the Technopedia repository.

Please note the following:

• The value TECHNOPEDIA must be specified to initially import the taxonomy of
Technopedia product categories. Users can only import vendor
products/components from the Technopedia repository to a vendor product
category/component category/ICT object in Alfabet that has the same name
as the product category that it is assigned to in the Technopedia repository.

• Populating the selector with the Technopedia product categories in the
Alfabet database will provide for better performance but there may
potentially be a discrepancy between the information available in the Alfabet
database and that in the Technopedia repository.

• While it is technically possible to create vendor product categories in Alfabet
and implement categories from Technopedia®, it is recommended that your
enterprise use only one source of vendor product categories. If you enter
"TECHNOPEDIA" in the XML attribute category_source, users will not be
able to view the vendor product categories in the Vendor Products explorer
that have been created in Alfabet nor select these vendor product categories
in the Technopedia selectors.

• If the value "ALFABET" is specified for the XML attribute category_source
and the subscription concept is implemented and ICT objects are created

http://api.technopedia.com/

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 29

based on Technopedia products, vendor product categories will be used to
populate the Technopedia (Sub-) Category field

• timeout: Specify the timeout (in seconds) to be applied to the HTTP request send to the
Technopedia API endpoint.

• certificate_path: Specify the path for self-signed certificates provided by Technopedia.

• default_gadate_period: Specify an integer to be used to calculate a default start date if
the general_availability_date property is empty for a Technopedia software of
hardware product. The integer shall represent the number of years to subtract from the
end_of_life_date property for the Technopedia product. The object class property
TP_ARTIFICIAL_GADATE will be automatically set to True for the vendor product if the start
date is calculated based on the XML element default_gadate_period.

• tp_sync_scope: Specify VendorProductCategory, ICTObjectCategory, and/or
ComponentCategory in a comma-separated list to allow the respective categories to be
created or updated via the predefined ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE.
For example, if a XML element ClassMapping shall be specified for the class
VendorProduct, add VendorProductCategory to the XML element tp_sync_scope. If a
XML element ClassMapping shall be specified for the class ICTObject, add
ICTObjectCategory to the XML element tp_sync_scope. For each class specified, the
Import All Technopedia Categories button will be available in the relevant view. If this XML
element is not defined, these classes will not be imported or synchronized via the ADIF import
scheme ALFABET_TECHNOPEDIA_UPDATE.

4) The XML element ClassMapping allows you to specify the relevant mapping for the following
classes: VendorProduct, Component, ICTObject, Vendor, VendorProductCategory,
ICTObjectCategory, and ComponentCategory. Add a child XML element ClassMapping to the
root XML element TechnopediaConfig for each relevant object class and specify the following
XML attributes:

If class keys for which the Unique attribute has been set to True have been defined for
a class entered in the XML attribute class, you should ensure that the Strict Null Han-
dling attribute for the class key for the class VendorProduct (or Component) is set to
False so that all entries with NULL values will be excluded from unique indexes. This
allows duplicate entries to be inserted if one of the index attributes is set to NULL. For
more information about configuring unique keys, see the section Configuring Class
Keys for Object Classes in the reference manual Configuring Alfabet with Alfabet Ex-
pand.

• To configure the mapping for the class VendorProduct (or Component):

• class: Enter VendorProduct (or Component).

• sw_stereotype and hw_stereotype:These are optional attributes that allow you to
map object class stereotypes specified for the object class specified in the XML
attribute class. In this way, you can implement different vendor product stereotypes
to represent different kinds of hardware products and software products. Define the
XML attributes sw_stereotype and hw_stereotype as follows:

• sw_stereotype: Enter the name of the object class stereotype specified for the
object class specified in the XML attribute class that may be created based on
Technopedia software products.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 30

• hw_stereotype: Enter the name of the object class stereotype specified for the
object class specified in the XML attribute class that may be created based on
Technopedia hardware products.

• lc_phase1 and lc_phase2: These are optional attributes that allow you to map the
lifecycle phases specified for the object class specified in the XML attribute class.
Some Technopedia products will have dates defined for the start of the product's
lifecycle, the end of the product's lifecycle, and the obsolete date of the product.
Lifecycle phases will be created if all dates are defined in the Technopedia® product
and the XML attributes lc_phase1 and lc_phase2 are defined. The dates of the first
lifecycle phase (lc_phase1) will be based on the date range from Date 1 to min(Date 2,
Date 3) and the dates of the second lifecycle phase (lc_phase2) will be based on the
date range from min(Date 2,Date 3) to max(Date 2, Date 3). The lifecycle attributes for
Technopedia software products are:

• Date 1 = general_availability_date

• Date 2 = end_of_life_date

• Date 3 = obsolete_date

Please note that the Technopedia lifecycle attributes general_availability_date,
end_of_life_date, and obsolete_date describe the lifecycle of Technopedia software products. The
lifecycle attributes for Technopedia hardware products are:

• Date 1 = general_availability_date

• Date 2 = last_availability_date

• Date 3 = obsolete_date

The XML attributes lc_phase1 and lc_phase2 should be mapped to two lifecycle phases defined for the

object class VendorProduct in the XML object ObjectLifecycleManager. Please note that these names

must be correctly spelled as written in the XML object ObjectLifecycleManager for the object class

VendorProduct. Define the XML attributes lc_phase1 and lc_phase2 as follows:

• lc_phase1: Enter the name of the lifecycle phase defined for the object class

VendorProduct in the XML object ObjectLifecycleManager that you want

to map to the period represented by the date range Date 1
(general_availability_date – the minimum value of either Date 2
(end_of_life_date/last_availability_date) or Date 3 (obsolete_date).
The date for end_of_life_date/last_availability_date will be used if no
obsolete_date has been defined.

• lc_phase2: Enter the name of the lifecycle phase defined for the object class

VendorProduct in the XML object ObjectLifecycleManager that you want

to map to the period represented by the date range minimum of either Date 2
(end_of_life_date/last_availability_date) or Date 3 (obsolete_date)
– maximum of either Date 2 (end_of_life_date/last_availability_date)
or Date 3 (obsolete_date). The date for general_availability_date will
be used if no obsolete_date has been defined.

• update_mode: If a vendor product is associated with a Technopedia product and the
Technopedia project is associated with a Technopedia product version/release,
typically an ICT object will be created in Alfabet based on the referenced Technopedia
product version/release when the ADIF scheme ALFABET_TECHNOPEDIA_UPDATE is

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 31

executed. The XML attribute update_mode allows you to specify what should happen if
the vendor product exists in Alfabet but has no reference to the relevant ICT object.
Specify one of the following for the class VendorProduct in order to create and merge
vendor products for the ICT objects added to Alfabet with missing references to vendor
products:

• Merge: The system tries to find an existing ICT object that matches values for
specified Alfabet properties that have been mapped to Technopedia attributes,

• CreateOrMerge:The system tries to find an existing ICT object and creates a
new ICT object if none is found

• None: No attempt is made to merge or create

• merge_props: Specify the Alfabet properties to use when matching Alfabet objects
with Technopedia objects. The default merge properties for the class VendorProduct
are Name, Version, Alias, Suite, Edition, and Stereotype. An XML element
AttributeMapping must be configured for each Alfabet property specified in the XML
attribute merge_props.

• For each XML element ClassMapping, create one or more XML elements
AttributeMapping in order to map the attributes in Technopedia to custom object
class properties configured for the object class specified in the XML attribute class.
Specify the following XML attributes for each XML element AttributeMapping:

• tp_attr: Enter the names of the attribute in Technopedia to map to the Alfabet
custom object class property specified in the attribute alfa_attr.

• alfa_attr: Enter the names of the Alfabet custom object class property to
map to the Technopedia® attribute specified in the attribute tp_attr.

• To configure the mapping for the class ICTObject: This configuration is only relevant if the
subscription concept is implemented, whereby Technopedia products associated with an ICT
object can be automatically added to Alfabet and regularly updated. In this case, ICT objects
are created in Alfabet based on software and hardware products in Technopedia. The ICT
objects based on Technopedia products are version-less and thus may serve as a
subscription to a Technopedia product. The versions of the Technopedia product that the ICT
object is based on can be imported to Alfabet as vendor products when the ICT object is
updated. To implement the subscription concept, the Is Subscribed checkbox must be
selected in the Technopedia tab of the ICT Object editor (ICTO_TP_Editor). If selected,
vendor products will be created for any new Technopedia product versions that are
associated with the Technopedia product that the ICT object is based. The vendor products
will be added to the Vendor Products page views when the ADIF job
ALFABET_TECHNOPEDIA_UPDATE is executed.

• class: Enter ICTObject.

• sw_stereotype: Enter the name of the object class stereotype specified for the object
class ICTObject that may be created based on Technopedia software products.

• hw_stereotype: Enter the name of the object class stereotype specified for the object
class ICTObject that may be created based on Technopedia hardware products.

• update_mode: If a vendor product is associated with a Technopedia product and the
Technopedia project is associated with a Technopedia product version/release,
typically an ICT object will be created in Alfabet based on the referenced Technopedia
product version/release when the ADIF scheme ALFABET_TECHNOPEDIA_UPDATE is

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 32

executed. The XML attribute update_mode allows you to specify what should happen if
the relevant ICT object exists in Alfabet but has no reference to the vendor product.
Specify one of the following for the class ICTObject to create and merge ICT objects
for the vendor products added to Alfabet with missing references to ICT objects:

• Merge: The system tries to find an existing ICT object that matches values for
specified Alfabet properties that have been mapped to Technopedia attributes.

• Create: The system creates a new ICT object. The value Create is the default
value.

• CreateOrMerge:The system tries to find an existing ICT object and creates a
new ICT object if none is found

• None: No attempt is made to merge or create

• merge_props: Specify the Alfabet properties to use when matching Alfabet objects
with Technopedia objects. The default merge properties for the class ICTObject are
Name and Stereotype. An XML element AttributeMapping must be configured for
each Alfabet property specified in the XML attribute merge_props.

• Create one or more XML elements AttributeMapping as a child of the XML element
ClassMapping in order to map the attributes in Technopedia to custom object class
properties configured for the object class specified in the XML attribute class. Specify
the following XML attributes for each XML element AttributeMapping:

• tp_attr: Enter the names of the attribute in Technopedia to map to the Alfabet
custom object class property specified in the attribute alfa_attr.

• alfa_attr: Enter the names of the Alfabet custom object class property to
map to the Technopedia® attribute specified in the attribute tp_attr.

• To configure the mapping for the class Vendor:

• class: Enter Vendor.

• For each XML element ClassMapping, create one or more XML elements
AttributeMapping in order to map the attributes in Technopedia to custom object
class properties configured for the object class specified in the XML attribute class.
Specify the following XML attributes for each XML element AttributeMapping:

• tp_attr: Enter the names of the attribute in Technopedia to map to the Alfabet
custom object class property specified in the attribute alfa_attr.

• alfa_attr: Enter the names of the Alfabet custom object class property to
map to the Technopedia® attribute specified in the attribute tp_attr.

• To add the description information for Technopedia Categories and Sub-Categories to
the associated *Category objects in Alfabet (VendorProductCategory,
ComponentCategory, and ICTObjectCategory):

• Ensure that the category class (VendorProductCategory, ICTObjectCategory,
and/or ComponentCategory) is specified in the XML element tp_sync_scope.

• Add a child XML element ClassMapping to the root XML element
TechnopediaConfig for each relevant category class specified in the XML element
tp_sync_scope. Specify the following XML attributes:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 33

• class: Enter the relevant category class (VendorProductCategory,
ICTObjectCategory, or ComponentCategory).

• Add a child XML element AttributeMapping to the XML element
ClassMapping.

tp_attr: Enter DESCRIPTION

alfa_attr: Enter Description

5) In the toolbar, click the Save button to save the XML definition.

Making the Technopedia Capability Available to the User Commu-
nity

You must ensure that the relevant page views supporting the Technopedia capability are available to the
user community. The page views should be available as needed in the object views that are associated with
the user profiles of the users who are responsible for defining and maintaining vendor products (or compo-
nents). For more information, see the chapters Configuring Object Views and Configuring User Profiles for
the User Community in the reference manual Configuring Alfabet with Alfabet Expand.

If your enterprise has implemented object class stereotypes for the class VendorProduct, then you can
hide the menu options that are not relevant for the vendor product stereotype in the custom object view.
Or, if your enterprise does not support the used of both hardware and software products, it is advised that
you also hide the menu option that is not relevant. For more information about how to do this, see the sec-
tion Hiding Functionalities in a Page View or Configured Report in the reference manual Configuring Alfabet
with Alfabet Expand.

The following Alfabet views support the creation of vendor products based on Technopedia software and
hardware products. The views you need to include in a user profile will depend on the methodology imple-

mented in your enterprise as well as the configuration of the XML object TechnopediaConfig:

• The following views allow vendor products to be created based on Technopedia software and
hardware products. A different selector is implemented to search for either Technopedia software
products or Technopedia hardware products:

• Vendor Products page view (VPC_Products) in the Vendor Product Category object profile

• Vendor Products page view (VDR_VendorProducts) in the Vendor object profile

• Vendor Products page view (DOM_VendorProducts) in the Domain object profile

• Vendor Products page view (ICTO_VendorProducts) in the ICT Object object profile

• Vendor Products page view (COM_VendorProduct) in the Component object profile

• Capture Vendor Products (VP_CaptureVendorProductand
COM_CaptureCVendorProduct_Ex)

• Document Vendor Products (Document_VendorProduct) functionalities

• Vendor Product object profile (VP_ObjectView): This view allows you to merge existing
vendor products with vendor products in the Technopedia repository.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 34

• Root Vendor Product Categories page view (VPC_RootCategories) available on the root
node of the Vendor Products explorer. This view allows you to import the entire repository of
Technopedia® product categories as vendor product categories.

• A subscription concept can also be implemented whereby Technopedia products associated with an
ICT object can be automatically added to Alfabet and regularly updated. In this case, ICT objects are
created in Alfabet based on software and hardware products in Technopedia. The ICT objects based
on Technopedia products are versionless and thus may serve as a subscription to a Technopedia
product release. The release versions of the Technopedia product that the ICT object is based on can
be imported to Alfabet as vendor products when the ICT object is updated.

The following views allow ICT objects to be created based on Technopedia software and hardware products
to be created. A different selector is implemented to search for either Technopedia software products or
Technopedia hardware products:

• ICT Objects page view (ICTOC_ICTObjects) in the ICT Object Category object profile

• ICT Objects page view (ICTOG_ICTObjects) in the ICT Object Group object profile

• ICT Objects page view (DOM_ICTObjects) in the Domain object profile

• ICT Objects page view (VD_ICTObjects) in the Vendor object profile

• Capture ICT Objects functionality (ICTO_CaptureICTObjects and
ICTO_CaptureICTObjects_Ex)

• Document ICT Objects functionality (Document_ICTObjects)

• Please note that the ICT Object editor (ICTO_TP_Editor) is required to implement the
subscription concept and must be assigned to the relevant class settings for the class ICT
Object. This editor includes an Is Subscribed checkbox in the Technopedia tab that if
selected specifies that the ICT object has a subscription to the Technopedia product that it
was based on. A Subscription Level field allows the release version level (All Releases, Major
Releases, Minor Releases) of the Technopedia product to be specified that shall be used to
create the vendor products. Vendor products will be created for all relevant release versions
of the Technopedia product that the ICT object is based on. Once the ICT object has been
created in Alfabet, the ADIF job ALFABET_TECHNOPEDIA_UPDATE must be executed to create
the vendor products. The vendor products will be added to the Vendor Products page views
for the ICT object they are associated with.

• ICT Object object profile (ICTO_ObjectView): This view allows you to merge existing ICT
objects with ICT objects in the Technopedia repository.

• Root ICT Object Categories page view (ICTOC_Roots) available on the root node of the ICT
Objects by Category explorer. This view allows you to import the entire repository of
Technopedia product categories as ICT object categories.

• Vendors can be created based on a Technopedia manufacturer in the following views:

• Vendors Explorer (VDR_Explorer)

• Vendors page view (VDRG_Vendors) in the Vendor Group object profile

• Capture Vendors functionality (COM_CaptureVendorand COM_CaptureVendor_Ex)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 35

If your enterprise implements the Technopedia capability to create components rather than ven-
dor products, the following Alfabet views support the creation of components based on Techno-
pedia software and hardware products:

• Root Categories page view (COMC_RootCategories) available on the root node of the
Components explorer. This view allows you to import the entire repository of
Technopedia® product categories as component categories.

• The following views allow Technopedia software and hardware products to be created. A
different selector is implemented to search for either Technopedia software products or
Technopedia hardware products:

• Components page view (COMC_Components) in the Component Category object
profile

• Components page view (COMG_Components) in the Component Group object
profile

• Components page view (DOM_Components) in the Domain object profile

• Capture Components functionality (COM_CaptureComponentand
COM_CaptureComponent_Ex)

• Document Components functionality (Document_Component) functionalities

Updating Technopedia Products in Alfabet via the ADIF Import
Scheme ALFABET_TECHNOPEDIA_UPDATE

A predefined ADIF import scheme is available to update the vendor products, vendor product categories,
ICT objects, and vendors based on Technopedia software and hardware products as well as their vendors
with the current data in the Technopedia repository. This ADIF import scheme ALFABET_TECHNOPE-
DIA_UPDATE is a protected ADIF import scheme and cannot be edited. When executed, the ADIF import

scheme reads the configuration specified in the XML object TechnopediaConfig. Changes that have oc-

curred in the Technopedia repository will be updated in the Alfabet database. If no changes have been
made to the relevant products in the Technopedia repository, a message will be displayed stating that no
changes were made.

The Technopedia products can be synchronized by a user with an administrative user profile in the ADIF
Jobs Administration Functionality. For more information, see the section Executing and Controlling ADIF
Jobs in the reference manual User and Solution Administration.

The following describes information relevant to the update of data in Alfabet via the predefined ADIF import
scheme ALFABET_TECHNOPEDIA_UPDATE. The update will align with data in Alfabet with the current infor-
mation in the Technopedia repository. For an overview of the attribute mapping, see the section Under-
standing the Mapping of Technopedia Products to Vendor Products in Alfabet .

Please note the following:

• Vendor Products:

• Each vendor product in the Alfabet database will be updated if the following criteria is
fulfilled:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 36

• The TP_ID property of the vendor product is defined (which constitutes the identifier
of the product_name value in Technopedia that the vendor product is based on).

• The TP_UPDATE value is earlier than the last_modified_date attribute of the
product in the Technopedia repository. The TP_UPDATE value constitutes the
timestamp of the most recent update of the vendor product with the corresponding
product in the Technopedia repository.

• All other vendor products that do not fill these criteria will not be changed.

• The following object class properties will be updated for software products via the ADIF
import scheme ALFABET_TECHNOPEDIA_UPDATE:

• Name

• Version

• Vendor

• Alias

• Suite

• Edition

• StartDate: The StartDate will be updated if the general_availability_date is
defined.

• EndDate: The EndDate will be updated if a specified date is defined for one of the
following dates in the following sequence: obsolete_date, end_of_life_date,
general_availability_date.

• Lifecycle phases will be created if all relevant dates are defined in the Technopedia®
product and the XML attributes lc_phase1 and lc_phase2 are specified in the XML

object TechnopediaConfig. Please note the following:

• The first lifecycle phase will consist of <general_availability_date minus
the minimum value of either end_of_life_date or obsolete_date>.

• The last lifecycle phase will consist of <minimum of
end_of_life_date/last_availability_date or obsolete_date minus the
maximum of end_of_life_date or obsolete_date>.

• All other properties mapped via the XML attribute AttributeMapping for the class

VendorProduct in the XML object TechnopediaConfig.

• The following object class properties will be updated for hardware products via the ADIF
import scheme ALFABET_TECHNOPEDIA_UPDATE:

• Name

• Version

• Vendor

• Alias

• StartDate: The StartDate will be updated if the general_availability_date is
defined.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 37

• EndDate: The EndDate will be updated if a specified date is defined for one of the
following dates in the following sequence: obsolete_date,
last_availability_date, general_availability_date.

• Lifecycle phases will be created if all relevant dates are defined in the Technopedia®
product and the XML attributes lc_phase1 and lc_phase2 are specified in the XML

object TechnopediaConfig. Please note the following:

• The first lifecycle phase will consist of <general_availability_date minus
the minimum value of either last_availability_date or obsolete_date>.

• The last lifecycle phase will consist of <minimum of
end_of_life_date/last_availability_date or obsolete_date minus the
maximum of last_availability_date or obsolete_date>.

• All other properties mapped via the XML attribute AttributeMapping for the class

VendorProduct in the XML object TechnopediaConfig.

• Vendors: Please note the following

• Each vendor in the Alfabet database will be updated if the following criteria is fulfilled:

• The TP_ID property of the vendor is defined (which constitutes the identifier of the
manufacturer in Technopedia that the vendor is based on).

• The TP_UPDATE value is earlier than the last_modified_date attribute of the
product in the Technopedia repository. The TP_UPDATE value constitutes the
timestamp of the most recent update of the vendor product with the corresponding
product in the Technopedia repository

• A new vendor will be automatically created in the Alfabet database for any vendor
product that is updated based on a Technopedia hardware product that does not have
a value specified for the manufacturer property.

• The following object class properties will be updated via the ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE:

• Name

• ShortName

• Description

• Country

• City

• Street

• Zip

• Email

• Fax

• Phone

• Website

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 38

• All other properties mapped via the XML attribute AttributeMapping for the class

Vendor in the XML object TechnopediaConfig.

• Components: Components will not be updated via the predefined ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE. You must configure an ADIF import scheme in order to
synchronize Alfabet components with the current information in Technopedia.

• ICT Objects: Please note the following:

• If the TP_Subscribed property of the ICT object is set to True, the execution of the
predefined ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE will create new vendor
products as specified via the TP_SUBSCRIPTIONLEVEL property of the ICT object.

• The reference of a vendor product to an ICT object will be updated via the execution of the
ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE if both the vendor product as well as
the ICT object originated from Technopedia and the Technopedia product version/release
associated with the vendor product references a Technopedia product that is different from
the Technopedia product referenced by the ICT object. The specification of the XML attribute
update_mode determines what should happen if the relevant ICT object exists in Alfabet but
has no reference to the vendor product.

• The StartDate and EndDate as well as lifecycle information will not be copied from the
Technopedia product to the ICT object.

• Properties mapped via the XML attribute AttributeMapping for the class ICTObject in the

XML object TechnopediaConfig can be updated via the ADIF import scheme

ALFABET_TECHNOPEDIA_UPDATE.

• Vendor Product Categories: Vendor product categories will be updated via the predefined ADIF
import scheme ALFABET_TECHNOPEDIA_UPDATE if the value VendorProductCategory is specified

for the XML element tp_sync_scope in the XML object TechnopediaConfig. If a vendor product

is created based on a Technopedia product and the associated category does not exist in Alfabet,
then the vendor product category will be created in Alfabet when the ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE is executed.

• ICT Object Categories: ICT object categories will be updated via the predefined ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE if the value ICTObjectCategory is specified for the XML element

tp_sync_scope in the XML object in the XML object TechnopediaConfig. If an ICT object is

created based on a Technopedia product and the associated category does not exist in Alfabet, then
the ICT object category will be created in Alfabet when the ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE is executed.

• Component Categories: Component categories will be updated via the predefined ADIF import
scheme ALFABET_TECHNOPEDIA_UPDATE if the value ComponentCategory is specified for the XML

element tp_sync_scope in the XML object in the XML object TechnopediaConfig. If a

component is created based on a Technopedia product and the associated category does not exist
in Alfabet, then the component category will be created in Alfabet when the ADIF import scheme
ALFABET_TECHNOPEDIA_UPDATE is executed.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 39

Chapter 6: Configuring Interoperability with CentraSite

CentraSite interoperability allows relevant assets in CentraSite® to be created as technical services in
Alfabet so that this information can be used to align business functionality that is planned and documented
in Alfabet with the operational context. Additionally, the technical services that are planned based on the
business requirements in Alfabet can also be transferred to CentraSite for operational realization and gov-
ernance. Alfabet may connect to multiple CentraSite instances, if needed.

The Alfabet interface supports the following:

• The Technical Services Registry Services - Filtered page view (COMSR_ServicesExt) and
Technical Services Registry Services page view (COMSR_Services) displays relevant CentraSite
assets and allows new technical services to be created in Alfabet based on those CentraSite assets.
Each time the Technical Services Registry Services - Filtered page view or Technical Services
Registry Services page view is loaded, each configured connection in the XML object

CentraSiteManager will be established and any technical services based on CentraSite assets

will be synchronized with the data in the CentraSite repository.

• The Technical Services page view (COM_TechServices) allows assets in CentraSite to be updated
with the information defined for their corresponding technical services in Alfabet. When the user
wants to synchronize a selected technical service in the Technical Services page view
(COM_TechServices) with the corresponding CentraSite asset, the relevant connection definition to
use for the synchronization must be selected in the Connection field in the Service Registry tab of
the Technical Service editor. Only a valid technical service may be updated to the CentraSite
repository.

The following is a brief overview of general configuration requirements for interoperability with CentraSite:

• Object class stereotypes must be configured for the object class Service and OrgaUnit.

• Custom properties must be configured for the object class Person and OrgaUnit.

• Release statuses must be configured for the object class Service as well as the object class

stereotypes in the XML object ReleaseStatusDefs. These release statuses should correspond to

the lifecycle states in CentraSite. The XML object ReleaseStatusDefs is available in Alfabet

Expand.

• One or more connections to CentraSite must be configured in the XML object

CentraSiteManager. The XML object CentraSiteManager is available in Alfabet Expand. For

information about configuration XML objects in Alfabet Expand, see the section Working with XML
Objects in the reference manual Configuring Alfabet with Alfabet Expand.

• CentraSite connection objects must be created in the CentraSite Connections view in the
Integration Solutions Configurations functionality so that a user can specify the connection to
the relevant CentraSite instance to use when synchronizing a technical service in the Technical
Services page view (COM_TechServices). A CentraSite connection object should be created for

each connection configured in the XML object CentraSiteManager

• The relevant user profiles must be configured to include the Technical Services Registry Services
- Filtered page view (COMSR_ServicesExt) and Technical Services page view
(COM_TechServices). The Technical Services Registry Services page view (COMSR_Services)
should not be visible for the user profiles accessing the CentraSite repository.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 40

• The attributes Assembly and Assembly Class available for the ServiceRegistryManager

solution manager must be specified to ensure interoperability. The XML object

ServiceRegistryManager is available in Alfabet Expand. The following values must be specified:

• Assembly : ITPlan

• Assembly Class : ITPlanSolution.GenericServiceRegistryManager

• If server variables are used to configure the connection in the XML object CentraSiteManager,

the server variables must be specified for the server alias in the Alfabet Administrator.

• The ADIF schemes Alfabet_CentraSite_Organization_Synchronization and
Alfabet_CentraSite_User_Synchronization should be executed when interoperability with
CentraSite is initially configured in order to import the owning organizations and owning users
assigned to the relevant assets in CentraSite to Alfabet.

• The ADIF scheme Alfabet_CentraSite_Asset_Synchronization should be executed regularly
in order to update the asset data from CentraSite to Alfabet.

The following information is available:

• Configuring the Class Model for Interoperability with CentraSite

• Configuring Connections for CentraSite Interoperability

• Configuring the Display of CentraSite Services in Alfabet

• Configuring the Update of Alfabet Data to CentraSite

• Importing CentraSite Data via ADIF Schemes

Configuring the Class Model for Interoperability with CentraSite

The following configurations of the object class Service are recommended or required in order to provide
interoperability with CentraSite

• Configure object class stereotypes for the object class Service. Each asset type from CentraSite
that should be displayed in Alfabet must be mapped to an object class stereotype of the class

Service in the XML element AssetTypeMappings in the XML object CentraSiteManager.

Therefore, before the XML object CentraSiteManager can be specified, you must first configure

the relevant object class stereotypes for the class Service. For more information about creating
and mapping object class stereotypes for technical services, see the section Configuring Object
Class Stereotypes for Technical Services in the reference manual Configuring Alfabet with Alfabet
Expand.

For example, the object class stereotypes for the object class Service could be specified as follows:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 41

• Configure release statuses for the object class Service as well as all relevant object class
stereotypes for the object class Service. Each asset type in CentraSite will have a lifecycle
consisting of lifecycle states. Therefore, each object class stereotype should have corresponding
release statuses that are aligned with the lifecycle states of the asset type that it will be mapped to.
Please keep the following in mind:

• The release status set for each relevant object class stereotype must be configured in the

XML object ReleaseStatusDefs. A release status definition must be created for the object

class Service as a whole as well as each object class stereotype. The release status
definition for the object class must include the complete set of release statuses configured
for its object class stereotypes. The release status definition for the object class stereotype
should contain only the release statuses relevant for the object class stereotype as well as
the sequences of release statuses that are available in order to reach a specific target release
status. For more information about configuring release statuses, see the section Configuring
Release Status Definitions for Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

• The release statuses in Alfabet should be specified in the primary language associated with
the base culture definition of the default culture setting. An error message will be displayed if

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 42

a user attempts to synchronize data in Alfabet with CentraSite assets and one or more of
those CentraSite assets have lifecycle states defined in a language that is not the primary
language in Alfabet.

• For each lifecycle state available for an asset type, a corresponding release status must be
defined for the relevant object stereotype. The name of the release status must be the same
as the name of the lifecycle state.

• The set of release statuses available for the object class stereotype may include release
statuses that are relevant to managing the technical service in Alfabet. Such release statuses
are considered Alfabet -owned, as they will be defined in Alfabet only.

• The lifecycle states defined in and owned by CentraSite should have the same names as the
release statuses defined in Alfabet.

• The set of release statuses that are CentraSite-owned should not be editable in Alfabet.
These lifecycle states (such as Describe Design, Implementation, Validation or Runtime)
should only be defined in CentraSite.

• One of the release statuses configured in the release status set will be specified in the XML

attribute HandoverStatus in the XML object CentraSiteManager as the release status

that the technical service must have in order to be updated to the CentraSite repository. If
necessary, a different handover status may be specified for each object class stereotype.

Please note that if the configured handover status is not mapped to the initial
lifecycle state in CentraSite, then the CentraSite asset must transition directly from
the initial state in CentraSite to the lifecycle state in CentraSite that is mapped to
the handover status. The technical services in Alfabet will not be transferred if the
corresponding CentraSite assets transition to the handover status via other inter-
mediary lifecycle states in CentraSite.

• Configure a custom property for the object class Person. Your company may choose to configure a
custom property for the class Person in order to specify which types of users may be imported to
the CentraSite repository.

• The custom property should be available in a custom editor for the class Person so that values can
be defined for each user. The custom property and permissible values are specified in the XML

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 43

attribute UserFilterProperty and XML element UserFilterPropertyValues in the XML object

CentraSiteManager. Please note that the standard property EXTERNAL_SOURCE available for the

object class Person can be used in place of a custom property. For more information about
configuring custom properties, see the section Configuring Custom Properties for Protected or
Public Object Classes in the reference manual Configuring Alfabet with Alfabet Expand.

• Configure a custom property of the type String with a custom enumeration for the object class
OrgaUnit. The custom property allows the organization in Alfabet to be identified that is to be
mapped to an organization in the CentraSite instance. The custom property should include a
permissible value for the object class OrgaUnit for each connection that you will configure. The
name of the custom property is entered in the XML attribute InstanceSeparatingOrgProperty of

the root XML element CentraSiteConfig. The permissible value for the custom property specified

in the XML attribute InstanceSeparatingOrgProperty is then entered in the XML attribute

InstanceSeparatingOrgPropertyValue of the relevant XML element Connection.

• Configure object class stereotypes for the object class OrgaUnit. This is necessary if you plan to
update Alfabet data to CentraSite. Each asset in CentraSite must have a valid owning organization.
When interoperability with CentraSite is initially configured, the ADIF scheme
Alfabet_CentraSite_Organization_Synchronization should be executed to import all
organizations owning the relevant assets to Alfabet. The organizations initially imported by the ADIF
scheme will be added as subordinate organizations to the organization identified in the XML attribute

AlfabetParentOrganization of the XML object CentraSiteManager. Please note that if you

want to enter a string that contains special characters (for example, a greater then (>) or lesser then

(<) symbol) in the XML object CentraSiteManager, you must replace the special characters with

respective XML compliant code. For information about configuration XML objects in Alfabet Expand,
see the section Working with XML Objects in the reference manual Configuring Alfabet with Alfabet
Expand.

• Configure role types for the object stereotypes configured for the object class Service, if needed,
in order to identify the owning user and owning organization of technical services. Role types are
configured in the Configuration module. For more information, see the section Configuring Role
Types to Define Roles in the Responsibilities Page View.

Configuring Connections for CentraSite Interoperability

To address the needs of federated organizations, Alfabet can connect to multiple CentraSite repositories.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 44

Prior to Alfabet release 10.0, only one connection to the CentraSite repository could be config-
ured in the XML object CentraSiteManager. With Alfabet release 10.0, multiple connections
can be configured in order to connect to multiple CentraSite repositories. With this enhancement,
the structure of the XML object CentraSiteManager has changed to accommodate for the
configuration of multiple connections. Please note that the XML element Connection continues
to be a child element of the root XML element CentraSiteConfig, but it is now the parent XML
element for the existing child XML elements AssetTypeMapping, OrganizationMapping,
and UserMapping. Multiple child elements Connection can be configured for the root XML
element CentraSiteConfig, whereby each XML element Connection specifies one connec-
tion from Alfabet to a CentraSite repository as well as the mapping of asset types, organizations,
and users relevant for the connection. Furthermore, the root XML element CentraSiteConfig
has a new XML attribute InstanceSeparatingOrgProperty and a new child element Proxy.

Please note that if you have configured the XML object CentraSiteManager prior to Alfabet
release 10.0, your existing configuration of the XML object CentraSiteManager will be not be
automatically restructured according to the new XML structure. If your enterprise wants to con-
figure multiple connections, you must manually revise the structure of the XML object Centra-
SiteManager based on the definition in the XML Template attribute and the XML XSD attribute
for the XML object CentraSiteManager.

The configuration of the connections is carried out in the XML object CentraSiteManager by means of

the root XML element CentraSiteConfig and its child XML element Connection. Once the configuration

of the XML object CentraSiteManager is complete, connection objects must also be created in the Cen-
traSite Connections view is available in the Integration Solutions Configurations functionality in the
Alfabet interface.

The general structure of the XML in the XML object is the following:

The root XML element CentraSiteConfig has the XML attribute InstanceSeparatingOrgProperty.

This XML attribute identifies the organization in Alfabet to map to an organization in the CentraSite in-
stance is used to identify which CentraSite connection the organization belongs to. The value entered
should specify a custom property of the object class OrgaUnit.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 45

If you want to enter a string that contains special characters (for example, a greater then (>) or
lesser then (<) symbol) in the XML object CentraSiteManager, you must replace the special
characters with respective XML compliant code, for example:

• > for >

• < for <

• " for "

• [for [

•] for]

The root XML element CentraSiteConfig has two child elements:

• Proxy: This XML element allows you to configure how to send requests to a CentraSite instance via

a proxy server. The configuration of the XML element Proxy is described in the section Configuring

Server Variables for Integration and Interoperability Solutions.

• Connection: This XML element allows you to configure the connection to a CentraSite instance. An

XML element Connection should be configured for each connection to a CentraSite instance. Each

XML element has three child elements. These child elements are AssetTypeMappings,

OrganizationMapping, and UserMapping. The configuration of these XML elements is

described in the following sections:

• Configuring the Display of CentraSite Services in Alfabet

• Configuring the Update of Alfabet Data to CentraSite

You can configure multiple connections from Alfabet to multiple CentraSite repositories. To define a con-
nection to a CentraSite repository.

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object CentraSiteManager and select Edit XML.... The XML object opens.

The XML object usually includes an example definition. In addition, a template is available
via the attribute XML Template of the XML object. The template can be copied to the
XML object to avoid having to write the configuration manually. The following describes
a configuration from scratch. With a sample configuration, you have to edit rather than
add the XML elements.

3) Add the XML attribute InstanceSeparatingOrgProperty to the root XML element

CentraSiteConfig and specify the custom property defined for the object class OrgaUnit that

allows the organization in Alfabet to be identified that is to be mapped to an organization in the
CentraSite instance.

4) Add a child XML element Connection to the root XML element CentraSiteConfig.

5) Configure a connection to CentraSite by setting the following XML attributes for the XML element

Connection:

• Proxy: If you are configuring proxies, add an XML attribute Proxy to each XML element

Connection that shall use one of the additional proxies. The value of the XML attribute

Proxy must be identical to the value of the XML attribute Name of the XML element

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 46

AdditionalProxy. The configuration of the XML element Proxy is described in the section

Configuring Server Variables for Integration and Interoperability Solutions.

• Instance SeparatingOrgPropertyValue: Enter the relevant value of the custom property
defined for the object class OrgaUnit specified in the XML attribute

InstanceSepartingOrgProperty of the root XML element CentraSiteConfig. The

custom property value identifies which CentraSite connection the organization belongs to.

• Name: Enter a unique name for the connection to CentraSite.

• Active: Enter "true" to activate the capability to update technical services from Alfabet to
CentraSite and to display services from CentraSite in Alfabet.

• CentraSiteURL: Enter the URL to access CentraSite or enter the relevant server variable
name. For example:
http://centrasite.company.com:53307/BusinessUI/#assetdetail)

In some of the XML attributes, server variables can be used to read the value of the
attribute at runtime from the server alias configuration of the Alfabet Web Applica-
tion when a connection to CentraSite is established. For more information about us-
ing server variables, see the section Configuring Server Variables for Integration and
Interoperability Solutions.

• CentraSiteUserName: Enter your enterprise's user name to access CentraSite or enter the
relevant server variable name.

• CentraSitePassword: Enter your enterprise's password to access CentraSite or enter the
relevant server variable name.

• ServiceViewURL: Enter the prefix for the complete link when navigating to CentraSite from
Alfabet when the user clicks the Open Service's View in Service Registry button in the
Technical Services Registry Services - Filtered page view. Enter the URL to access the
service view in CentraSite or enter the relevant server variable name. For example:
http://centrasite.company.com:53307/BusinessUI/#assetdetail)

• ExcludedLifecycles: Specify one or more CentraSite lifecycle states that should not be
displayed in the Alfabet interface. Any CentraSite asset with one of the specified lifecycle
states will not be displayed in the Technical Services Registry Service - Filtered page view.

• CentraSiteApiMaturityStatus: If necessary, enter the status of the asset property API
Maturity in CentraSite in order to limit the assets displayed in Alfabet to only those with
specified API Maturity status.

• Timeout: Enter the number of minutes of user inactivity after which the connection to
CentraSite should be terminated.

• DefaultPageSize: Enter an integer between 10-1000 to be used to determine the maximum
number of records to return in the Technical Services Registry Service - Filtered page view
in the Alfabet interface. The recommended value is 10. Please note that an excessively high
number (for example, anything above 11 will impact performance.

6) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 47

Configuring the Display of CentraSite Services in Alfabet

If your enterprise intends to display CentraSite data in Alfabet in order to create new technical services in

Alfabet based on CentraSite assets, you must configure the following in the XML object CentraSiteM-
anager:

• Configure an XML element Connection in the XML object CentraSiteManager to specify

authorization and connection to the CentraSite server. This is described in the section Configuring
Connections for CentraSite Interoperability. Please note that the XML attributes
OrganizationDefinition and OwnerDefinition are not required to import data from CentraSite
to Alfabet.

• Configure the XML element AssetTypeMappings in the XML object CentraSiteManager to

specify the mapping of the asset types in CentraSite to the relevant object class stereotypes for the
class Service.

• Configure the XML element OrganizationMapping in the XML object CentraSiteManager to

specify how the organizations owning assets in CentraSite should be handled in Alfabet if technical
services are created based on CentraSite assets.

• Configure the XML element UserMapping in the XML object CentraSiteManager to specify how

the users owning assets in CentraSite should be handled in Alfabet if technical services are created
based on CentraSite assets.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 48

To edit the XML object CentraSiteManager:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object CentraSiteManager and select Edit XML. The XML editor is

displayed in the center pane. For general information about editing XML objects in Alfabet Expand,
see the section Working with XML Objects.

3) Create and define the XML element Connection as described in the section Configuring

Connections for CentraSite Interoperability.

4) Each asset in CentraSite has an asset type. You must specify the mapping of the CentraSite asset
types to the relevant object class stereotypes configured for the class Service in Alfabet. In the

XML element AssetTypeMappings, create an XML element AssetTypeMapping with the

following XML attributes for each CentraSite asset type that should be displayed in the Alfabet
interface:

Please note that the ADIF scheme Alfabet_CentraSite_Asset_Synchronization
should be executed regularly to update the data about asset types in CentraSite to
Alfabet.

• CentraSiteAssetType: Enter the name of the CentraSite asset type that should be mapped
to the object class stereotype specified in the XML element AlfabetStereotype.

• AlfabetStereotype: Enter the name of the object class stereotype of the class Service in
Alfabet that should be mapped to the CentraSite asset type specified in the XML element
CentraSiteAssetType.

• HandoverStatus: This XML attribute does not need to be specified if your enterprise will only
import CentraSite assets to Alfabet (The XML element HandoverStatus is only required if
you plan to update Alfabet data to CentraSite).

5) Each asset in CentraSite has an owning organization. Configure how the owning organization
definition of a CentraSite asset should be handled in Alfabet by setting the following XML

attributes for the XML element OrganizationMapping:

• CreateMissingOrganizationInAlfabet: Enter "true" to allow organizations defined for
assets in CentraSite to be created in Alfabet if that organization does not already exist in
Alfabet. The name of the CentraSite organization will be created in the Alfabet database
based on the specifications in the XML attributes AlfabetOrganizationStereotype and
AlfabetParentStereotype. Enter "false" if the organization owning the asset in
CentraSite should not be created in Alfabet.

• AlfabetOrganizationStereotype: If the XML attribute
CreateMissingOrganizationInAlfabet is set to "true", enter the name of the object
class stereotype in Alfabet that organizations imported from the CentraSite repository should
be mapped to.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 49

• AlfabetParentOrganization: If the XML attribute
CreateMissingOrganizationInAlfabet is set to "true", enter the name of the object
class stereotype in Alfabet that should be specified as the parent organization stereotype
that organizations imported from the CentraSite repository should be mapped to. If this XML
attribute is not defined, all organizations will be added to the top-level of the organization
hierarchy in Alfabet.

If you want to enter a string that contains special characters (for example, a greater
then (>) or lesser then (<) symbol), you must replace the special characters with re-
spective XML compliant code, for example:

• > for >

• < for <

• " for "

• [for [

•] for]

Please note that the ADIF scheme Alfabet_CentraSite_Oganization_Syn-
chronization should be executed initially to import the organizations owning ser-
vices in CentraSite to Alfabet.

6) If the XML attribute CreateMissingOrganizationInAlfabet is set to "true", specify which
attributes defined for the owning organizations in CentraSite should be mapped to which standard
or custom properties of the organization stereotype specified in the XML attribute

AlfabetOrganizationStereotype. In the XML element OrganizationMapping, create an

XML element AttributeMapping for each Alfabet property/CentraSite attribute combination

with the following XML attributes:

• CentraSiteAttribute: Enter the name of an attribute for owning organizations in
CentraSite to map to the standard or custom property available specified in the XML attribute
AlfabetProperty.

• IsIdentifier: Enter "true" if the attribute is the unique ID for the organization in
CentraSite. Enter "false" if the attribute is not the unique ID for the organization in
CentraSite.

• AlfabetProperty: Enter the name of the standard or custom property available for the
relevant organization stereotype in Alfabet to map to the attribute specified in the XML
attribute CentraSiteAttribute.

7) Each asset in CentraSite has an owning user. Configure how the owning user definition of a
CentraSite asset should be handled in Alfabet by setting the following XML attributes for the XML

element UserMapping:

• IgnoreDomainName: Specify one or more domain names that should be ignored when the
owning user information is displayed in Alfabet.

Please note that the ADIF scheme Alfabet_CentraSite_User_Synchronization
should be executed initially to import the users owning assets in CentraSite to Alfabet.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 50

8) Create a child XML element CentraSiteUserSynchronization for the XML element

UserMapping to configure the synchronization of the owning user definition of a CentraSite

asset in Alfabet

• CreateMissingUserInAlfabet: Enter "true" to allow users defined for assets in CentraSite
to be created in Alfabet if that user does not already exist in Alfabet.

• MaxRecordCount: Enter an integer between 10-100 to be used to determine the maximum
number of users to import from CentraSite to Alfabet.Please note that a high number will
impact performance.

The child XML element AlfabetUserSynchronization for the XML element Us-
erMapping does not need to be specified if your enterprise will only import CentraSite
assets to Alfabet (and not update Alfabet data to CentraSite).

9) If the XML attribute CreateMissingUserInAlfabet is set to "true", specify which standard or
custom properties for the object class Person should be automatically filled with values when a

new user is created in Alfabet. In the XML element CentraSiteUserSynchronization, create

an XML element UserPropertyValues. Create an XML element PropertyValue for each

property that should be automatically set for the users imported from CentraSite:

• AlfabetProperty: Enter the name of the standard or custom property available for the
object class Person in Alfabet that should automatically have a value defined.

• Value: Enter the value that should automatically be defined for the XML attribute
AlfabetProperty.

10) If the XML attribute CreateMissingUserInAlfabet is set to "true", specify which attributes
defined for the owning users in CentraSite should be mapped to which standard or custom

properties for the object class Person. In the XML element UserMapping, create an XML element

AttributeMapping for each CentraSite attribute/ Alfabet property combination with the

following XML attributes

• CentraSiteAttribute: Enter the name of an attribute for owning users in CentraSite to
map to the standard or custom property specified in the XML attribute AlfabetProperty.

• IsIdentifier: Enter "true" if the attribute is the unique ID for the user in CentraSite. Enter
"false" if the attribute is not the unique ID for the user in CentraSite.

• AlfabetProperty: Enter the name of the standard or custom property available for the
object class Person in Alfabet to map to the attribute specified in the XML attribute
CentraSiteAttribute.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 51

11) In the toolbar, click the Save button to save the XML definition.

Configuring the Update of Alfabet Data to CentraSite

Please keep the following in mind when updating Alfabet data to CentraSite:

• Configure the XML element Connection in the XML object CentraSiteManager to specify

authorization and connection to the CentraSite server. This is described in the section Configuring
Connections for CentraSite Interoperability. Specify the OwnerDefinition query to define the
owning user for the technical service in CentraSite and specify the OrganizationDefinition
query to define a valid owning organization in CentraSite. An organization having the same name as
the organization found via this query must already exist in CentraSite. A user having the same name
as the user found via this query must already exist in CentraSite.

• Each asset in CentraSite must have a valid owning organization. Therefore, in order for a technical
service created in Alfabet to be synchronized with the CentraSite repository, you must define an
organization for the technical service that is considered valid for CentraSite. The owning
organization must be found for the technical service in Alfabet by means of a query specified in the

XML attribute OrganizationDefinition in the XML object CentraSiteManager. Please

consider the following regarding the owning organization definition:

• When interoperability with CentraSite is initially implemented, the ADIF scheme
Alfabet_CentraSite_Organization_Synchronization should be executed to import all
organizations owning the relevant assets to Alfabet.

• The organizations initially imported by the ADIF scheme will be added as subordinate
organizations to the organization identified in the XML attribute

AlfabetParentOrganization in the XML object CentraSiteManager.

If you want to enter a string that contains special characters (for example, a greater
then (>) or lesser then (<) symbol), you must replace the special characters with re-
spective XML compliant code, for example:

• > for >

• < for <

• " for "

• [for [

•] for]

• Because it is not possible to create new owning organizations in CentraSite, the query that
you define in the XML attribute OrganizationDefinition must find organizations that

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 52

already exist in CentraSite. In other words, the query would typically find the organizations
that have been imported via the ADIF scheme
Alfabet_CentraSite_Organization_Synchronization.

• The Alfabet user updating the Alfabet technical services to CentraSite must have permissions
in CentraSite to create the asset for the organization.

• Each asset in CentraSite must have a valid owning user. Therefore, in order for a technical service
created in Alfabet to be synchronized with the CentraSite repository, you must define a user that is
considered valid for CentraSite. The owning user must be found for the technical service in Alfabet
by means of a query specified in the XML attribute OwnerDefinition in the XML object

CentraSiteManager. Please consider the following regarding the owning user definition:

• When interoperability with CentraSite is initially implemented, the ADIF scheme
Alfabet_CentraSite_User_Synchronization should be executed to import all users
owning the relevant assets to Alfabet.

• Unlike organizations, it is possible to create new owning users in CentraSite by setting the
XML attribute CreateMissingUserInCentraSite to "true" in the XML object

CentraSiteManager.

• If the XML attribute CreateMissingUserInCentraSite is set to "false" in the XML object

CentraSiteManager, the query that you define in the XML attribute OwnerDefinition

must find users that already exist in CentraSite. In this case, the query would typically find the
users that have been imported via the ADIF scheme
Alfabet_CentraSite_User_Synchronization.

• Configure the XML element AssetTypeMappings in the XML object CentraSiteManager to

specify the mapping of the asset types in CentraSite to the relevant object class stereotypes for the
class Service. Each object class stereotype/asset type mapping must have a release status
specified in the XML attribute HandoverStatus. Only technical services with the specified
HandoverStatus may be updated to the CentraSite repository.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 53

To edit the XML object CentraSiteManager:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object CentraSiteManager and select Edit XML. The XML editor is

displayed in the center pane. For general information about editing XML objects in Alfabet Expand,
see the section Working with XML Objects.

3) Create and define the XML element Connection as described in the section Configuring

Connections for CentraSite Interoperability.

4) Each asset in CentraSite must have a valid owning organization. Therefore, before a technical
service in Alfabet can be updated to CentraSite, you must ensure that an organization in Alfabet is
identified as the organization owning the technical service. In the XML attribute

OrganizationDefinition of the XML element Connection, define an Alfabet query or native

SQL query to find the organization. Please note that if you update technical services to CentraSite,
the information about the owning organization will be available to all users with access to
CentraSite.

Please consider the following regarding the owning organization definition:

• When interoperability with CentraSite is initially implemented, the ADIF scheme
Alfabet_CentraSite_Organization_Synchronization should be executed
to import all organizations owning the relevant CentraSite assets to Alfabet.

• The organizations initially imported by the ADIF scheme will be added as
subordinate organizations to the organization identified in the XML attribute

AlfabetParentOrganizatino of the XML object CentraSiteManager. Please

note that if you want to enter a string that contains special characters (for
example, a greater then (>) or lesser then (<) symbol) in the XML object

CentraSiteManager, you must replace the special characters with respective

XML compliant code. For information about configuration XML objects in Alfabet
Expand, see the section Working with XML Objects in the reference manual
Configuring Alfabet with Alfabet Expand.

• Because it is not possible to create new owning organizations in CentraSite, the
query that you define in the XML attribute OrganizationDefinition must find
organizations that already exist in CentraSite. Typically, the query would
therefore find the organizations that have been imported via the ADIF scheme
Alfabet_CentraSite_Organization_Synchronization.

5) Each asset in CentraSite must have an owning user. Therefore, before a technical service in
Alfabet can be updated to CentraSite, you must ensure that a user in Alfabet is identified as the
user owning the technical service. Define the following regarding the owning user:

• In the XML attribute OwnerDefinition of the XML element Connection, define an Alfabet

query or native SQL query to find the user. Please note that if you update technical services
to CentraSite, the information about the owning user will be available to all users with access
to CentraSite.

Please consider the following regarding the owning user definition:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 54

• When interoperability with CentraSite is initially implemented, the ADIF
scheme Alfabet_CentraSite_User_Synchronization should be
executed to import all users owning the relevant assets to Alfabet.

• Unlike organizations, it is possible to create new owning users in CentraSite
by setting the XML attribute CreateMissingUserInCentraSite to "true"

in the XML object CentraSiteManager.

• If the XML attribute CreateMissingUserInCentraSite to "false" in the

XML object CentraSiteManager, the query that you define in the XML

attribute OwnerDefinition must find users that already exist in CentraSite.
In this case, the query would typically find the users that have been imported
via the ADIF scheme Alfabet_CentraSite_User_Synchronization.

• Configure how the owning user definition of a CentraSite asset should be handled in Alfabet

by setting the following XML attributes for the XML element UserMapping:

Please note that the ADIF scheme Alfabet_CentraSite_User_Synchroniza-
tion should be executed regularly to update the data bout users owning assets in
CentraSite to Alfabet.

• IgnoreDomainName: Specify one or more domain names that should be ignored when
the owning user information is displayed in Alfabet.

• Create a child XML element AlfabetUserSynchronization for the XML element

UserMapping to configure the update of owning organizations Alfabet to CentraSite.

Specify the following XML attributes:

• CreateMissingUserInCentraSite: Enter "true" to allow owning users defined for
technical services in Alfabet to be updated to CentraSite.

• UserFilterProperty: Enter a valid standard or custom property of the class Person
in order to specify which users may be created in CentraSite. For example, the
standard property EXTERNAL_SOURCE could be used to filter which users to add to
CentraSite or a custom property could be used that has been configured with relevant
values.

• Create a child XML element UserFilterPropertyValues for the XML element

AlfabetUserSynchronization to specify which values can be selected for the filter

property specified in the XML element UserFilterProperty. Create an XML element Value

for each value that should be displayed in the filter:

6) Each asset in CentraSite has an asset type. You must specify the mapping of the CentraSite asset
type to the relevant object class stereotype configured for the class Service in Alfabet. In the

XML element AssetTypeMappings, create an XML element AssetTypeMapping with the

following XML attributes for each CentraSite asset type that should be displayed in the Alfabet
interface:

• CentraSiteAssetType: Enter the name of the CentraSite asset type that should be mapped
to the object class stereotype specified in the XML element AlfabetStereotype.

• AlfabetStereotype: Enter the name of the object class stereotype of the class Service in
Alfabet that should be mapped to the CentraSite asset type specified in the XML element
CentraSiteAssetType.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 55

• HandoverStatus: Specify the release status that the technical services based on the object
class stereotype in the XML attribute AlfabetStereotype must have in Alfabet in order to
be updated to CentraSite. For more information about configuring release statuses for
CentraSite interoperability, see the section Configuring Release Status Definitions for Object
Classes in the reference manual Configuring Alfabet with Alfabet Expand.

7) In the toolbar, click the Save button to save the XML definition.

Importing CentraSite Data via ADIF Schemes

Several predefined ADIF import scheme are available to synchronize Alfabet with CentraSite in terms of the
organizations and users owning CentraSite assets as well as the data capture about the CentraSite assets.
The following ADIF schemes are relevant for Alfabet -CentraSite interoperability:

• Alfabet_CentraSite_Organization_Synchronization: This ADIF scheme should be executed
when interoperability with CentraSite is initially implemented in order to import all organizations
owning the relevant CentraSite assets to Alfabet.

• Alfabet_CentraSite_User_Synchronization: This ADIF scheme should be executed when
interoperability with CentraSite is initially implemented in order to import all users owning the
relevant CentraSite assets to Alfabet.

• Alfabet_CentraSite_Asset_Synchronization: This ADIF scheme should be executed in regular
intervals to update the information about asset types in CentraSite to Alfabet.

For detailed information about executing predefined ADIF scheme in order to synchronize the CentraSite
repository with Alfabet, see the section Predefined ADIF Schemes in the reference manual Alfabet Data
Integration Framework.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 56

Chapter 7: Configuring Interoperability with webMethods API
Portal

Software AG provides interoperability between the Alfabet product and webMethods® API Portal product
so that your enterprise can review, and test APIs as planned technical services in the Alfabet user inter-
face. The webMethods API Portal product serves as a storefront to discover and evaluate APIs. You can
configure interoperability between Alfabet and the webMethods API Portal and thus provide integrated
functions to import APIs to Alfabet as planned technical services, document and describe those planned
technical services, and export the modified technical service definition back to the API portal.

APIs may be imported in the Alfabet user interface via the Technical Services Registry Services view
(COMSR_Services) or the Technical Services Registry Services - Filtered (COMSR_ServicesExt) view.
Once the technical services have a specified release status, they can be exported from Alfabet to API portal
in the user interface via the Technical Services view (COM_TechServices) view. By the click of a button,
users can navigate from Alfabet to webMethods API portal and view the API definition directly in the API
portal interface.

APIs may also be imported to Alfabet by means of an ADIF import scheme. Technical services
cannot be exported via an ADIF scheme to webMethods API portal. If the import of APIs via ADIF
is specified in the XML object APIportalConfig, then the predefined ADIF scheme
Alfabet_APIportal_Synchronization must be executed to trigger the import. The data
from webMethods API portal will be imported to temporary tables in ADIF. Further configuration
is required in order to update the Alfabet database tables with the data in the temporary data-
base tables. For more information about executing the predefined ADIF scheme Alfabet_API-
portal_Synchronization and process the data in the temporary tables, see the reference
manual Alfabet Data Integration Framework.

APIs and their references are mapped to predefined object classes in Alfabet. When an API is imported to
Alfabet via the views in the Alfabet user interface, a technical service will be created in Alfabet. If any Op-
erations, Resources, Methods, and Method Parameters are specified for the API, the correspondent
technical service operation, business data, technical service operation method, and technical service oper-
ation method parameter will be created in Alfabet. The mapping is described in the table below:

API Portal
Object

Alfabet Object Class

API Technical Service (Service)

Please note that additional specification of the mapping of APIs to technical services
must be configured in the XML object APIportalConfig.

Operation Technical Service Operation (ServiceOperation)

Resource Business Data (BusinessData)

Please note that additional specification of the mapping of Resources to business data
must be configured in the XML object ServiceResourceMapping.

Method Technical Service Operation Method (ServiceOperationMethod)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 57

API Portal
Object

Alfabet Object Class

Method Pa-
rameter

Technical Service Operation Method Parameter (ServiceOperationMethodParam-
eter)

The following information is available to configure interoperability with webMethods API portal:

• Overview of the Configuration Required for webMethods API Portal

• Configuring the Class Model for Interoperability with webMethods API Portal

• Configuring Connections and API Asset Mapping for webMethods API Portal

• Configuring the Mapping of API Portal Resources to Business Data

Overview of the Configuration Required for webMethods API Por-
tal

The following is an overview of all configuration steps required for interoperability with webMethods® API
Portal:

1) Configure object class stereotypes for the object classes Service, ServiceOperation, and
ServiceOperationMethod. You will later map the object class stereotypes of the class Service
to the API assets available in the API portal. This is described in more detail in the section
Configuring the Class Model for Interoperability with webMethods API Portal.

2) Map the object class stereotypes for the object classes Service, ServiceOperation, and

ServiceOperationMethod in the XML object TechServiceManager. For each technical

service stereotype, specify which technical service operation stereotypes are permissible. For
each technical service operation stereotype, specify which technical service operation method
stereotypes are permissible. For more information, see the section Configuring Object Class
Stereotypes for Technical Services in the chapter Configuring Alfabet Functionalities Implemented
in the Solution Environment in the reference manual Configuring Alfabet with Alfabet Expand.

3) Configure release statuses for the object class Service as well as the object class stereotypes in

the XML object ReleaseStatusDefs. These release statuses should correspond to the statuses

used in webMethods API Portal. Please note that the release status HandoverStatus must be
specified in order to be able to export the technical services in Alfabet to webMethods API Portal.
This is described in more detail in the section Configuring the Class Model for Interoperability with
webMethods API Portal.

4) Specify one or more connections to webMethods API Portal in the XML object APIPortalConfig.

Here you also specify whether import occurs via the Alfabet user interface or via an ADIF import
scheme, how API assets are mapped to the object class stereotypes configured for the object
class Service, and the HandoverStatus required for the technical services in order to export
them to webMethods API Portal. This is described in more detail in the section Configuring
Connections and API Asset Mapping for webMethods API Portal.

5) If server variables are used to configure the connection in the XML object APIPortalConfig, the

server variables must be specified for the server alias in the Alfabet Administrator. For more

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 58

information about configuring server variables, see the section Configuring Server Variables for
Integration and Interoperability Solutions.

6) Specify the mapping of data associated with Resources to the objects of the class Business

Data. This is specified in the XML object ServiceResourceMapping. This is described in more

detail in the section Configuring the Mapping of API Portal Resources to Business Data.

7) The attributes Assembly and Assembly Class available for the ServiceRegistryManager

solution manager must be specified to ensure interoperability. The XML object

ServiceRegistryManager is available in Alfabet Expand. The following values must be

specified:

• Assembly : ITPlan

• Assembly Class : ITPlanSolution.GenericServiceRegistryManager

8) Specify which document types attached to technical services in Alfabet may also be exported to

API Portal. The protected enumeration APIPortalDocTypes allows you to customize the file

extensions that are available in the Shared Document Types field in the API Portal Connection
editor in the Integration Solutions functionality. The files extensions defined are subject to the
specification of the black list/white list of file extensions defined in the XML object

FileExtensionLists. For more information, see the section Specifying the Permissible File

Extensions for Uploading/Downloading Files in the reference manual Configuring Alfabet with
Alfabet Expand.

9) Create API portal connection objects in the API Portal Database Connection view in the
Integration Solutions Configurations functionality in the Alfabet user interface. An API portal
connection object should be created for each API portal connection configured in the XML object

APIPortalConfig. The API portal connection objects allow a user to specify the connection to

the relevant API portal instance to use when exporting/synchronizing a technical service in the
Technical Services page view (COM_TechServices). You must also specify whether Alfabet
should automatically synchronize the technical services when the Technical Services page view
is loaded. The creation of API portal connection objects is described in the section Configuring
Semantic Connections for Integration Solutions in the reference manual Configuring Evaluation
and Reference Data in Alfabet.

10) .The relevant user profiles must be configured to include the Technical Services Registry
Services - Filtered page view (COMSR_ServicesExt) available on the root node of the
Components explorer (COM_Explorer) and Technical Services page view (COM_TechServices)
available in the Components object view. (This view is only available for components of the type
Service). The Technical Services Registry Services page view (COMSR_Services) available on
the root node of the Components explorer (COM_Explorer) should not be visible for the user
profiles accessing webMethods API Portal. For more information about configuring user profiles,
see the chapter Configuring User Profiles for the User Community in the reference manual
Configuring Alfabet with Alfabet Expand.

11) If APIs are to be imported to Alfabet by means of the predefined ADIF import scheme
Alfabet_APIPortal_Synchronization, you must trigger the predefined ADIF scheme
Alfabet_APIPortal_Synchronization in order to import the APIs to temporary database
tables. Your enterprise must configure the update of the Alfabet database tables with the data in
the temporary database tables. This is described in more detail in the reference manual Alfabet
Data Integration Framework.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 59

Configuring the Class Model for Interoperability with webMethods
API Portal

The following configuration is required in order to provide interoperability with webMethods® API Portal:

• Configure object class stereotypes for the object class Service. Each API asset type that should be
displayed in Alfabet must be mapped to an object class stereotype of the class Service in the XML

element AssetTypeMappings in the XML object APIPortalConfig. Therefore, before the XML

object APIPortalConfig can be specified, you must first configure the relevant object class

stereotypes for the class Service. For detailed information about how to configure object class
stereotypes, see the section Configuring Object Class Stereotypes for Object Classes in the chapter
Configuring the Class Model in the reference manual Configuring Alfabet with Alfabet Expand.

For example, the object class stereotypes for the object class Service could be specified as follows:

• Configure object class stereotypes for the object class ServiceOperation. Each Operation
associated with an imported API will be created as a technical service operation in Alfabet.

• Configure object class stereotypes for the object class ServiceOperationMethod. Each Method
associated with an imported API will be created as a technical service operation method in Alfabet.

• Configure the mapping of technical service stereotypes (based on class Service), technical service
operation stereotypes (based on class ServiceOperation), and technical service operation method
stereotypes (based on class ServiceOperationMethod) in the XML object

TechServiceManager. For each technical service stereotype, specify which technical service

operation stereotypes are permissible. For each technical service operation stereotype, specify
which technical service operation method stereotypes are permissible. For more information about
mapping the object class stereotypes defined for technical services and technical service
operations, see the section Configuring Object Class Stereotypes for Technical Services in the
reference manual Configuring Alfabet with Alfabet Expand.

• Configure release statuses for the object class Service as well as all relevant object class
stereotypes for the object class Service. Each asset type in API Portal will have a status. Therefore,
each object class stereotype should have corresponding release statuses that are aligned with the
statuses of the asset type that it will be mapped to. Please keep the following in mind:

• The release status set for each relevant object class stereotype must be configured in the

XML object ReleaseStatusDefs. A release status definition must be created for the object

class Service as a whole as well as each object class stereotype. The release status
definition for the object class must include the complete set of release statuses configured
for its object class stereotypes. The release status definition for the object class stereotype
should contain only the release statuses relevant for the object class stereotype as well as
the sequences of release statuses that are available in order to reach a specific target release
status. For more information about configuring release statuses, see the section Configuring

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 60

Release Status Definitions for Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

• The release statuses in Alfabet should be specified in the primary language associated with
the base culture definition of the default culture setting. An error message will be displayed if
a user attempts to synchronize data in Alfabet with API Portal assets and one or more of
those API Portal assets have statuses defined in a language that is not the primary language
in Alfabet.

• For each status available for an asset type, a corresponding release status must be defined
for the relevant object stereotype. The name of the release status must be the same as the
name of the API portal status.

• The set of release statuses available for the object class stereotype may include release
statuses that are relevant to managing the technical service in Alfabet. Such release statuses
are considered Alfabet -owned, as they will be defined in Alfabet only.

• The statuses defined in and owned by API Portal should have the same names as the release
statuses defined in Alfabet.

• The set of release statuses that are API Portal-owned should not be editable in Alfabet. These
status (such as Designing, Design-Approved, Test, etc.) should only defined in API Portal.

Configuring Connections and API Asset Mapping for webMethods
API Portal

Multiple connections to webMethods® API Portal can be defined in order to address the needs of federated

organizations. The XML object APIPortalConfig allows you to configure the connections to webMethods

API Portal instances as well as how the APIs should be imported to Alfabet. You can configure the infor-
mation necessary so that users can import and export APIs to Alfabet in the Alfabet user interface and/or
how to import the APIs via an ADIF import scheme. Please note the following:

• APIs may be imported via the Technical Services Registry Services view (COMSR_Services) or
the Technical Services Registry Services - Filtered (COMSR_ServicesExt) view. If the import of
APIs should occur via the Alfabet user interface, you must map the API assets to the relevant object

class stereotypes configured for the class Service in the XML object APIPortalConfig. You must

also specify the relevant HandoverStatus release status that a technical service must have in
order to be exported from Alfabet to the API Portal.

• APIs may also be imported to Alfabet by means of an ADIF import scheme. Technical services cannot
be exported via an ADIF scheme to webMethods API Portal. If the import of APIs via ADIF is specified

in the XML object APIPortalConfig, then the predefined ADIF scheme

Alfabet_APIPortal_Synchronization must be executed to trigger the import. The data from
webMethods API Portal will be imported to temporary tables in ADIF. Further configuration is
required in order to update the Alfabet database tables with the data in the temporary database
tables. For more information about configuring the predefined ADIF scheme
Alfabet_APIPortal_Synchronization, see the reference manual Alfabet Data Integration
Framework.

If you want to enter a string that contains special characters in the XML object APIPortalCon-
fig, you must replace the special characters with respective XML compliant code, for example:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 61

• > for >

• < for <

• " for "

• [for [

•] for]

The configuration of the connections is carried out in the XML object APIPortalConfig by means of the

root XML element APIPortalConfig and its child XML element APIPortalConnections. Once the con-

figuration of the XML object APIPortalConfig is complete, connection objects must also be created in

the API Portal Database Connections view available in the Integration Solutions Configurations func-
tionality in the Alfabet interface.

The root XML element APIPortalConfig has two child elements:

• Proxy: This XML element allows you to configure how to send requests to webMethods API Portal

instances via a proxy server. The configuration of the XML element Proxy is described in the section

Configuring Server Variables for Integration and Interoperability Solutions.

• APIPortalConnections: This XML element allows you to configure multiple connections to

webMethods API Portal instances. A child XML element APIPortalConnection should be

configured for each connection to a webMethods API Portal instance. Each XML element has two

child elements. These child elements are AssetTypeMappings, which allows you to specify the

mapping of APIs from the API portal to Alfabet when imported via the Alfabet user interface, and

DataConnectivityInfo, which allows you to specify the import of APIs from the API portal to

Alfabet when imported via an ADIF import scheme.

The XML object usually includes an example definition. In addition, a template is available via the
attribute XML Template of the XML object. The template can be copied to the XML object to
avoid having to write the configuration manually. The following information describes a configu-
ration from scratch. With a sample configuration, you must edit the existing XML elements rather
than add them to the XML configuration.

You can configure multiple connections from Alfabet to multiple webMethods API Portal instances. To de-
fine a connection to a webMethods API Portal instance.

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object APIPortalConfig and select Edit XML.... The XML object opens.

The XML element Proxy allows you to configure how to send requests to webMethods
API Portal instances via a proxy server. This is optional. If you have configured multiple
connections and each connection shall use a different proxy, you can add additional
proxies to your proxy configuration and specify the relevant proxy definition in the API
Portal connection configuration. The configuration of the XML element Proxy is de-
scribed in the section Configuring Server Variables for Integration and Interoperability
Solutions.

3) Add a child XML element APIPortalConnections to the root XML element APIPortalConfig.

4) Add a child XML element APIPortalConnection to the XML element APIPortalConnections

for each database connection instance that you will define.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 62

5) Configure a connection to each API portal instance by setting the following XML attributes for the

XML element APIPortalConnection:

• Name: Enter a unique name for the connection to the API portal.

• ServerURL: Enter the URL to access the API portal or enter the relevant server variable name.

In some of the XML attributes, server variables can be used to read the value of the
attribute at runtime from the server alias configuration of the Alfabet Web Applica-
tion when a connection to API Portal is established. For more information about us-
ing server variables, see the section Configuring Server Variables for Integration and
Interoperability Solutions.

• UserName: Enter your enterprise's user name to access the API portal or enter the relevant
server variable name.

• Password: Enter your enterprise's password to access the API portal or enter the relevant
server variable name.

• ServiceViewURL: Enter the prefix for the complete link when navigating to the API portal
from Alfabet when the user clicks the Open Service's View in Service Registry button in the
Technical Services Registry Services - Filtered page view. Enter the URL to access the
service view in API Portal or enter the relevant server variable name. For example:
http://centrasite.company.com:53307/BusinessUI/#assetdetail)

• TransactionHistoryPeriod: Enter the number of days for which the transactions are
fetched. This is only necessary if a bulk import is being executed via ADIF.

• Timeout: Enter the number of minutes of user inactivity after which the connection to the
API portal should be terminated.

6) If APIs shall be imported to Alfabet via the Alfabet user interface, add an XML element

AssetTypeMappings to each XML element APIPortalConnection. For each asset type that you

want to import to Alfabet, specify a child XML element element AssetTypeMapping.

7) Configure each asset type mapping by setting the following XML attributes for the XML element
AssetTypeMapping:

• APIPortalAssetType: Enter the name of the webMethods API Portal asset type that should
be mapped to the object class stereotype specified in the XML element AlfabetStereotype.

• HandoverStatus: Specify the release status that the technical services based on the object
class stereotype in the XML attribute AlfabetStereotype must have in Alfabet in order to
be updated to the webMethods API Portal instance. For more information about configuring
release statuses for webMethods API Portal interoperability, see the section Configuring
Release Status Definitions for Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

• AlfabetStereotype: Enter the name of the object class stereotype of the class Service in
Alfabet that should be mapped to the API portal asset type specified in the XML element
APIPortalAssetType.

8) If APIs shall be imported to Alfabet via an ADIF import scheme, add an XML element DataImport

with a child XML element DataConnectivityInfo to each XML element APIPortalConnection.

9) For each import definition that you want to configure, specify a child XML element
DataConnection and an XML attribute Name. Enter the name of the data connection.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 63

10) For each import type in webMethods API Portal that you want to import via ADIF, enter an XML
element Import with an XML attribute Type. Enter the import type that may be imported via the
ADIF import scheme. Permissible import types are: API, PROVIDER, EVENT, PACKAGE, and PLAN.

11) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring the Mapping of API Portal Resources to Business Data

An API that is imported from the webMethods API Portal to Alfabet will be created as a technical service

based on the stereotype configured in the XML object APIPortalConfig. When the API is imported, the

associated Resources may be imported as well. In this case, an instance of the object class BusinessData
may be updated or created for each Resource. For this to happen, you must map the logic to use to find a
matching business data in Alfabet and update that business data with the information about the Resource
or, if necessary, to create a new business data and write the information about the Resource to it. Several
mapping logics may be configured to find or create business data.

If Methods and Parameters are defined for a Resource, they will also be added to the business
data in Alfabet. For each Method specified for a Resource, a technical service operation method
(instance of class ServiceOperationMethod) will be created and for each Parameter, a tech-
nical service operation method parameter (instance of class ServiceOperationMethodParam-
eter) will be created. Please note that the technical service operation method (instance of class
ServiceOperationMethod) will be created based on an object class stereotype that is specified
in the XML object TechServiceManager. For more information, see the section Configuring
Object Class Stereotypes for Technical Services in the chapter Configuring Alfabet Functionali-
ties Implemented in the Solution Environment.

The following must be configured in the XML object ServiceResourceMapping.

• Specify one or more ResourceMapping definitions in order to find existing business data or find
existing business objects that new business data is created for. The mapping logic is highly
configurable.

For example, you could specify the following mapping logics:

• Priority 1: Find an existing business data that matches all properties specified in
the resource mapping and update it. For example, find a business data that has
the same the Name property as the Resource.

• Priority 2: Find an existing business data that matches some of the properties
specified in the resource mapping and update it. For example, find an existing
business data that has a part of the Name property as the Resource.

• Priority 3: Create a new business data for a business object that matches all
properties specified in the resource mapping. For example, find an existing
business object that has the same Name property as the Resource and create a
business data for that business object.

• Priority 4: Create a new business data for a business object that matches some
of the properties specified in the resource mapping. For example, find an existing
business object that has a part of the Name property as the Resource and
create a business data for that business object.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 64

• Specify how the data types (such as string, integer, etc.) for Resources are mapped to the
property types for the object class property types available for the class BusinessData. In the
Alfabet class model, each object class property has a Property Type attribute that has a value such
as String, StringArray, Integer, Real, Text, etc. For example, the Name and Version properties
both have the Property Type = String.) You must specify this mapping for the business data
created/updated in the context of each object class stereotype of the class Service used in the API
portal integration.

• Specify how the data type types (such as string, integer, etc.) for Resources mapped to the
business data attribute types relevant for Alfabet business data. Business data attributes are
attributes that describe the business data. Business data attributes are captured the Attributes
property of the class BusinessData. The Type attribute of the class BusinessDataAttribute is
configured by your solution designer for your solution configuration via the protected enumeration

BusinessDataAttributeType. Each enumeration item defined for the protected enumeration

BusinessDataAttributeType constitutes a type of business data attribute.

To specify the XML object ServiceResourceMapping for integration with webMethods API Portal:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object ServiceResourceMapping and select Edit XML.... The XML object

opens.

3) The names of the Resource in webMethods API Portal may have one or more prefixes that you
may want to exclude from the mapping. To specify which prefixes to ignore, add a child XML

element PrefixesToIgnoreOnResourceMapping to the root XML element

ServiceResourceMapping.

4) For each prefix that you want to specify, add a child XML element Value to the XML element

PrefixesToIgnoreOnResourceMapping. In the XML element Value, enter the prefix that

should be ignored.

For example, a Resource named Employee may have a name that constitutes the path
in the API portal where the Resource is located. For example, the name of the looks like
a resource path such as <StoreName>/<APIName>/Employee. In this case, you may
want to add the ResourceEmployee as a business data to A but ignore the prefixes
Store and API when. In this case, you would specify:

...

<PrefixesToIgnoreOnResourceMapping>

<Value>store</Value>

<Value>api</Value>

</PrefixesToIgnoreOnResourceMapping>

5) For each rule to map the Resource to business data, create an XML element ResourceMapping.

Configure the following XML attributes for the XML element ResourceMapping:

• Class: Enter BusinessData to search for existing business data to map to. Enter
BusinessObject to search for existing business objects for which a new business data
should be created. New business objects cannot be created in the context of this
configuration.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 65

• Priority: Enter an integer to specify the priority of this resource mapping. The resource
mapping definition with Priority="1" will be searched for first, Priority="2" will be
searched second, etc.

• Properties: Specify one or more object class properties of the business data/business
object that must be searched to find a match. The name of the Resource typically uses the
following syntax: {Name}\{Property1}\{Property2}. You can specify multiple object
classes to facilitate finding a match. For example, Properties="{Name}/{Version}".

• MatchType: Enter FullString if all values in the XML attribute Properties must be met in
order to find the business data or business object. Enter SubString if only some of the
values in the XML attribute Properties must be met in order to find the business data or
business object. If no match is found, the Resource will be ignored, and business data will not
be updated/created.

6) To map the data property information for business data, create an XML element

DataTypeMappings.

7) For each object class stereotype of the class Service specified in the XML element

AlfabetStereotype XML object APIPortalConfig, create an XML element

DataTypeMapping that is a child of the XML element DataTypeMappings.

8) In the XML element DataTypeMapping, create an XML attribute AlfabetStereotype and enter

the name of the object class stereotype configured for the class Service that you want to
specify.

9) In the XML element DataTypeMapping, create an XML element DataType for each property

type that is relevant for the object class stereotype specified in the XML attribute
AlfabetStereotype. Alfabet property types are String, Boolean, Date, Integer, Text, etc.
The property type is specified in the Property Type attribute for each relevant property of the
object class Service. (For example, the Name and Version properties for the class
BusinessData both have the Property Type = String.) Configure the following XML attributes

for the XML element DataType:

• AlfabetPropertyType: Enter the type for the Alfabet object class property (String,
Boolean, Date, Integer, Text, etc.) to map to the data type of the API specified in the XML
attribute ExternalPropertyType.

• ExternalPropertyType: Enter the data type for the API to map to the Alfabet object class
property type defined in the XML attribute AlfabetPropertyType.

10) In the XML element DataTypeMapping, create an XML element AttributeDataType for each

type of business data attribute that is relevant for Alfabet business data. Business data attributes
are attributes that describe the business data. Business data attributes are captured via the
Attributes property of the class BusinessData. The Type attribute of the class
BusinessDataAttribute is configured by your solution designer for your solution configuration

via the protected enumeration BusinessDataAttributeType. Each enumeration item defined

for the protected enumeration BusinessDataAttributeType constitutes a type of business

data attribute. Configure the following XML attributes for the XML element AttributeDataType:

• AlfabetAttributeType: Enter the enumeration item specified for the protected

enumeration BusinessDataAttributeType to map to the Resource data type specified

int the XML attribute ExternalPropertyType.

• ExternalPropertyType: Enter the Resource data type to map to the business data
attribute type specified in the XML attribute AlfabetPropertyType.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 66

11) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 67

Chapter 8: Configuring Interoperability with webMethods API
Gateway

Software AG provides interoperability between Alfabet and webMethods® API Gateway so that your enter-
prise can administer and monitor APIs as operational technical services in the Alfabet user interface. The
webMethods API Gateway product provides a policy framework to manage and secure APIs. You can con-
figure interoperability between Alfabet and the webMethods API Gateway and thus provide integrated
functions to import APIs to Alfabet as operational technical services, document and describe those tech-
nical services, and export the modified technical service definition back to the API gateway.

APIs may be imported in the Alfabet user interface via the Technical Services Registry Services view
(COMSR_Services) or the Technical Services Registry Services - Filtered (COMSR_ServicesExt) view.
Once the technical services have a specified release status, they can be exported from Alfabet to API Gate-
way in the user interface via the Technical Services view (COM_TechServices) view. By the click of a but-
ton, users can navigate from Alfabet to webMethods API Gateway and view the API definition directly in the
API gateway interface.

APIs may also be imported to Alfabet by means of an ADIF import scheme. Technical services
cannot be exported via an ADIF scheme to webMethods API Gateway. If the import of APIs via
ADIF is specified in the XML object APIGatewayConfig, then an ADIF scheme must be exe-
cuted to trigger the import. The data from webMethods API Gateway will be imported to tempo-
rary tables in ADIF. Further configuration is required in order to update the Alfabet database ta-
bles with the data in the temporary database tables. For more information about configuring and
executing an ADIF scheme, see the reference manual Alfabet Data Integration Framework.

APIs and their references are mapped to predefined object classes in Alfabet. When an API is imported to
Alfabet via the views in the Alfabet user interface, a technical service will be created in Alfabet. If any Op-
erations, Resources, Methods, and Method Parameters are specified for the API, the correspondent
technical service operation, business data, technical service operation method, and technical service oper-
ation method parameter will be created in Alfabet. The mapping is described in the table below:

API Gateway
Object

Alfabet Object Class

API Technical Service (Service)

Please note that additional specification of the mapping of APIs to technical services
must be configured in the XML object APIGatewayConfig.

Operation Technical Service Operation (ServiceOperation)

Resource Business Data (BusinessData)

Please note that additional specification of the mapping of Resources to business data
must be configured in the XML object ServiceResourceMapping.

Method Technical Service Operation Method (ServiceOperationMethod)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 68

API Gateway
Object

Alfabet Object Class

Method Pa-
rameter

Technical Service Operation Method Parameter (ServiceOperationMethodParam-
eter)

The following information is available to configure interoperability with webMethods API Gateway:

• Overview of the Configuration Required for webMethods API Gateway

• Configuring the Alfabet Class Model for Interoperability with webMethods API Gateway

• Configuring Connections and API Asset Mapping for webMethods API Gateway

• Configuring the Mapping of API Gateway Resources to Business Data

Overview of the Configuration Required for webMethods API Gate-
way

The following is an overview of all configuration steps required for interoperability with webMethods® API
Gateway:

1) Configure object class stereotypes for the object classes Service, ServiceOperation, and
ServiceOperationMethod. You will later map the object class stereotypes of the class Service
to the API assets available in the API gateway. This is described in more detail in the section
Configuring the Alfabet Class Model for Interoperability with webMethods API Gateway.

2) Map the object class stereotypes for the object classes Service, ServiceOperation, and

ServiceOperationMethod in the XML object TechServiceManager. For each technical

service stereotype, specify which technical service operation stereotypes are permissible. For
each technical service operation stereotype, specify which technical service operation method
stereotypes are permissible. For more information, see the section Configuring Object Class
Stereotypes for Technical Services in the chapter Configuring Alfabet Functionalities Implemented
in the Solution Environment in the reference manual Configuring Alfabet with Alfabet Expand.

3) Configure release statuses for the object class Service as well as the object class stereotypes in

the XML object ReleaseStatusDefs. These release statuses should correspond to the statuses

used in webMethods API Gateway. Please note that the release status HandoverStatus must be
specified in order to be able to export the technical services in Alfabet to webMethods API
Gateway. This is described in more detail in the section Configuring the Alfabet Class Model for
Interoperability with webMethods API Gateway.

4) Specify one or more connections to webMethods API Gateway in the XML object

APIGatewayConfig. Here you also specify whether import occurs via the Alfabet user interface

or via an ADIF import scheme, how API assets are mapped to the object class stereotypes
configured for the object class Service, and the HandoverStatus required for the technical
services in order to export them to webMethods API Gateway. This is described in more detail in
the section Configuring Connections and API Asset Mapping for webMethods API Gateway.

5) If server variables are used to configure the connection in the XML object APIGatewayConfig,

the server variables must be specified for the server alias in the Alfabet Administrator. For more

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 69

information about configuring server variables, see the section Configuring Server Variables for
Integration and Interoperability Solutions.

6) Specify the mapping of data associated with Resources to the objects of the class Business

Data. This is specified in the XML object ServiceResourceMapping. This is described in more

detail in the section Configuring the Mapping of API Gateway Resources to Business Data.

7) The attributes Assembly and Assembly Class available for the ServiceRegistryManager

solution manager must be specified to ensure interoperability. The XML object

ServiceRegistryManager is available in Alfabet Expand.The following values must be specified:

• Assembly : ITPlan

• Assembly Class : ITPlanSolution.GenericServiceRegistryManager

8) Create API gateway connection objects in the API Gateway Database Connection view in the
Integration Solutions Configurations functionality in the Alfabet user interface. An API gateway
connection object should be created for each API gateway connection configured in the XML

object APIGatewayConfig. The API gateway connection objects allow a user to specify the

connection to the relevant API gateway instance to use when exporting/synchronizing a technical
service in the Technical Services page view (COM_TechServices). You must also specify
whether Alfabet should automatically synchronize the technical services when the Technical
Services page view is loaded. The creation of API gateway connection objects is described in the
section Configuring Semantic Connections for Integration Solutions in the reference manual
Configuring Evaluation and Reference Data in Alfabet.

9) .The relevant user profiles must be configured to include the Technical Services Registry
Services - Filtered page view (COMSR_ServicesExt) available on the root node of the
Components explorer (COM_Explorer) and Technical Services page view (COM_TechServices)
available in the Components object view. (This view is only available for components of the type
Service). The Technical Services Registry Services page view (COMSR_Services) available on
the root node of the Components explorer (COM_Explorer) should not be visible for the user
profiles accessing webMethods API Gateway. For more information about configuring user profiles,
see the chapter Configuring User Profiles for the User Community in the reference manual
Configuring Alfabet with Alfabet Expand.

10) If APIs are to be imported to Alfabet by means of an ADIF import scheme, you must create an ADIF
scheme via the API GAteway Assistant in order to import the APIs to temporary database tables.
Your enterprise must configure the update of the Alfabet database tables with the data in the
temporary database tables. This is described in more detail in the reference manual Alfabet Data
Integration Framework.

Configuring the Alfabet Class Model for Interoperability with web-
Methods API Gateway

The following configuration is required in order to provide interoperability with webMethods® API Gateway:

• Configure object class stereotypes for the object class Service. Each API asset type that should be
displayed in Alfabet must be mapped to an object class stereotype of the class Service in the XML

element AssetTypeMappings in the XML object APIGatewayConfig. Therefore, before the

XML object APIGatewayConfig can be specified, you must first configure the relevant object

class stereotypes for the class Service. For detailed information about how to configure object
class stereotypes, see the section Configuring Object Class Stereotypes for Object Classes in the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 70

chapter Configuring the Class Model in the reference manual Configuring Alfabet with Alfabet
Expand.

For example, the object class stereotypes for the object class Service could be specified as follows:

• Configure object class stereotypes for the object class ServiceOperation. Each Operation
associated with an imported API will be created as a technical service operation in Alfabet.

• Configure object class stereotypes for the object class ServiceOperationMethod. Each Method
associated with an imported API will be created as a technical service operation method in Alfabet.

• Configure the mapping of technical service stereotypes (based on class Service), technical service
operation stereotypes (based on class ServiceOperation), and technical service operation method
stereotypes (based on class ServiceOperationMethod) in the XML object

TechServiceManager. For each technical service stereotype, specify which technical service

operation stereotypes are permissible. For each technical service operation stereotype, specify
which technical service operation method stereotypes are permissible. For more information about
mapping the object class stereotypes defined for technical services and technical service
operations, see the section Configuring Object Class Stereotypes for Technical Services in the
reference manual Configuring Alfabet with Alfabet Expand.

• Configure release statuses for the object class Service as well as all relevant object class
stereotypes for the object class Service. Each asset type in API Gateway will have a status.
Therefore, each object class stereotype should have corresponding release statuses that are aligned
with the statuses of the asset type that it will be mapped to. Please keep the following in mind:

• The release status set for each relevant object class stereotype must be configured in the

XML object ReleaseStatusDefs. A release status definition must be created for the object

class Service as a whole as well as each object class stereotype. The release status
definition for the object class must include the complete set of release statuses configured
for its object class stereotypes. The release status definition for the object class stereotype
should contain only the release statuses relevant for the object class stereotype as well as
the sequences of release statuses that are available in order to reach a specific target release
status. For more information about configuring release statuses, see the section Configuring
Release Status Definitions for Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

• The release statuses in Alfabet should be specified in the primary language associated with
the base culture definition of the default culture setting. An error message will be displayed if
a user attempts to synchronize data in Alfabet with API Gateway assets and one or more of
those API Gateway assets have statuses defined in a language that is not the primary
language in Alfabet.

• For each status available for an asset type, a corresponding release status must be defined
for the relevant object stereotype. The name of the release status must be the same as the
name of the API gateway status.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 71

• The set of release statuses available for the object class stereotype may include release
statuses that are relevant to managing the technical service in Alfabet. Such release statuses
are considered Alfabet -owned, as they will be defined in Alfabet only.

• The statuses defined in and owned by API Gateway should have the same names as the
release statuses defined in Alfabet.

• One of the release statuses configured in the release status set will be specified in the XML

attribute HandoverStatus in the XML object APIGatewayConfig as the release status

that the technical service must have in order to be updated to the API Gateway repository. If
necessary, a different handover status may be specified for each object class stereotype. This
is described in the section Configuring Connections and API Asset Mapping for webMethods
API Gateway.

Configuring Connections and API Asset Mapping for webMethods
API Gateway

Multiple connections to webMethods® API Gateway can be defined in order to address the needs of feder-

ated organizations. The XML object APIGatewayConfig allows you to configure the connections to web-

Methods API Gateway instances as well as how the APIs should be imported to Alfabet. You can configure
the information necessary so that users can import and export APIs to Alfabet in the Alfabet user interface
and/or how to import the APIs via an ADIF import scheme. Please note the following:

• APIs may be imported via the Technical Services Registry Services view (COMSR_Services) or
the Technical Services Registry Services - Filtered (COMSR_ServicesExt) view. If the import of
APIs should occur via the Alfabet user interface, you must map the API assets to the relevant object

class stereotypes configured for the class Service in the XML object APIGatewayConfig. You

must also specify the relevant HandoverStatus release status that a technical service must have in
order to be exported from Alfabet to the API Gateway.

• APIs may also be imported to Alfabet by means of an ADIF import scheme. Technical services cannot
be exported via an ADIF scheme to webMethods API Gateway. If the import of APIs via ADIF is

specified in the XML object APIGatewayConfig, then the ADIF scheme must be executed to

trigger the import. The data from webMethods API Gateway will be imported to temporary tables in
ADIF. Further configuration is required in order to update the Alfabet database tables with the data
in the temporary database tables. For more information about configuring an ADIF scheme, see the
reference manual Alfabet Data Integration Framework.

If you want to enter a string that contains special characters in the XML object APIGate-
wayConfig, you must replace the special characters with respective XML compliant code, for
example:

• > for >

• < for <

• " for "

• [for [

•] for]

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 72

The configuration of the connections is carried out in the XML object APIGatewayConfig by means of

the root XML element APIGatewayConfig and its child XML element APIGatewayConnections. Once

the configuration of the XML object APIGatewayConfig is complete, connection objects must also be

created in the API Gateway Database Connections view available in the Integration Solutions Configu-
rations functionality in the Alfabet interface.

The root XML element APIGatewayConfig has two child elements:

• Proxy: This XML element allows you to configure how to send requests to webMethods API Gateway

instances via a proxy server. The configuration of the XML element Proxy is described in the section

Configuring Server Variables for Integration and Interoperability Solutions.

• APIGatewayConnections: This XML element allows you to configure multiple connections to

webMethods API Gateway instances. A child XML element APIGatewayConnection should be

configured for each connection to a webMethods API Gateway instance. Each XML element has two

child elements. These child elements are AssetTypeMappings, which allows you to specify the

mapping of APIs from the API gateway to Alfabet when imported via the Alfabet user interface, and

DataConnectivityInfo, which allows you to specify the import of APIs from the API gateway to

Alfabet when imported via an ADIF import scheme.

The XML object usually includes an example definition. In addition, a template is available via the
attribute XML Template of the XML object. The template can be copied to the XML object to
avoid having to write the configuration manually. The following information describes a configu-
ration from scratch. With a sample configuration, you must edit the existing XML elements rather
than add them to the XML configuration.

You can configure multiple connections from Alfabet to multiple webMethods API Gateway instances. To
define a connection to a webMethods API Gateway instance.

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object APIGatewayConfig and select Edit XML.... The XML object opens.

The XML element Proxy allows you to configure how to send requests to webMethods
API Gateway instances via a proxy server. This is optional. If you have configured multi-
ple connections and each connection shall use a different proxy, you can add additional
proxies to your proxy configuration and specify the relevant proxy definition in the API
Gateway connection configuration. The configuration of the XML element Proxy is de-
scribed in the section Configuring Server Variables for Integration and Interoperability
Solutions.

3) Add a child XML element APIGatewayConnections to the root XML element

APIGatewayConfig.

4) Add a child XML element APIGatewayConnection to the XML element

APIGatewayConnections for each database connection instance that you will define.

5) Configure a connection to each API gateway instance by setting the following XML attributes for

the XML element APIGatewayConnection:

• Name: Enter a unique name for the connection to the API gateway.

• ServerURL: Enter the URL to access the API gateway or enter the relevant server variable
name.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 73

In some of the XML attributes, server variables can be used to read the value of the
attribute at runtime from the server alias configuration of the Alfabet Web Applica-
tion when a connection to API Gateway is established. For more information about
using server variables, see the section Configuring Server Variables for Integration
and Interoperability Solutions.

• UserName: Enter your enterprise's username to access the API gateway or enter the relevant
server variable name.

• Password: Enter your enterprise's password to access the API gateway or enter the relevant
server variable name.

• ServiceViewURL: Enter the prefix for the complete link when navigating to the API gateway
from Alfabet when the user clicks the Open Service's View in Service Registry button in the
Technical Services Registry Services - Filtered page view. Enter the URL to access the
service view in API Gateway or enter the relevant server variable name. For example:
http://<APIGatewayServer>:<Port>/#default/apiDetails)

• TransactionHistoryPeriod: Enter the number of days for which the transactions are
fetched. This is only necessary if a bulk import is being executed via ADIF.

• Timeout: Enter the number of minutes of user inactivity after which the connection to the
API gateway should be terminated.

6) If APIs shall be imported to Alfabet via the Alfabet user interface, add an XML element

AssetTypeMappings to each XML element APIGatewayConnection. For each asset type that

you want to import to Alfabet, specify a child XML element AssetTypeMapping.

7) Configure each asset type mapping by setting the following XML attributes for the XML element
AssetTypeMapping:

• APIGatewayAssetType: Enter the name of the webMethods API Gateway asset type that
should be mapped to the object class stereotype specified in the XML element
AlfabetStereotype.

• HandoverStatus: Specify the release status that the technical services based on the object
class stereotype in the XML attribute AlfabetStereotype must have in Alfabet in order to
be updated to the webMethods API Gateway instance. For more information about
configuring release statuses for webMethods API Gateway interoperability, see the section
Configuring Release Status Definitions for Object Classes in the reference manual Configuring
Alfabet with Alfabet Expand.

• AlfabetStereotype: Enter the name of the object class stereotype of the class Service in
Alfabet that should be mapped to the API gateway asset type specified in the XML element
APIGatewayAssetType.

8) If APIs shall be imported to Alfabet via an ADIF import scheme, add an XML element DataImport
with a child XML element DataConnectivityInfo to each XML element

APIGatewayConnection.

9) For each import definition that you want to configure, specify a child XML element
DataConnection and an XML attribute Name. Enter the name of the data connection.

10) For each import type in webMethods API Gateway that you want to import via ADIF, enter an XML
element Import with an XML attribute Type. Enter the import type that may be imported via the
ADIF import scheme. Permissible import types are API, POLICY, APPLICATION, TRANSATION,
TRANSACTIONDETAIL, PACKAGE, and PLAN:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 74

11) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring the Mapping of API Gateway Resources to Business
Data

An API that is imported from the webMethods API Gateway to Alfabet will be created as a technical service

based on the stereotype configured in the XML object APIGatewayConfig. When the API is imported, the

associated Resources may be imported as well. In this case, an instance of the object class BusinessData
may be updated or created for each Resource. For this to happen, you must map the logic to use to find a
matching business data in Alfabet and update that business data with the information about the Resource
or, if necessary, to create a new business data and write the information about the Resource to it. Several
mapping logics may be configured to find or create business data.

If Methods and Parameters are defined for a Resource, they will also be added to the business
data in Alfabet. For each Method specified for a Resource, a technical service operation method
(instance of class ServiceOperationMethod) will be created and for each Parameter, a tech-
nical service operation method parameter (instance of class ServiceOperationMethodParam-
eter) will be created. Please note that the technical service operation method (instance of class
ServiceOperationMethod) will be created based on an object class stereotype that is specified
in the XML object TechServiceManager. For more information, see the section Configuring
Object Class Stereotypes for Technical Services in the chapter Configuring Alfabet Functionali-
ties Implemented in the Solution Environment.

The following must be configured in the XML object ServiceResourceMapping.

• Specify one or more ResourceMapping definitions in order to find existing business data or find
existing business objects that new business data is created for. The mapping logic is highly
configurable.

For example, you could specify the following mapping logics:

• Priority 1: Find an existing business data that matches all properties specified in
the resource mapping and update it. For example, find a business data that has
the same the Name property as the Resource.

• Priority 2: Find an existing business data that matches some of the properties
specified in the resource mapping and update it. For example, find an existing
business data that has a part of the Name property as the Resource.

• Priority 3: Create a new business data for a business object that matches all
properties specified in the resource mapping. For example, find an existing
business object that has the same Name property as the Resource and create a
business data for that business object.

• Priority 4: Create a new business data for a business object that matches some
of the properties specified in the resource mapping. For example, find an existing
business object that has a part of the Name property as the Resource and
create a business data for that business object.

• Specify how the data types (such as string, integer, etc.) for Resources are mapped to the
property types for the object class property types available for the class BusinessData. In the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 75

Alfabet class model, each object class property has a Property Type attribute that has a value such
as String, StringArray, Integer, Real, Text, etc. For example, the Name and Version properties
both have the Property Type = String.) You must specify this mapping for the business data
created/updated in the context of each object class stereotype of the class Service used in the API
portal integration.

• Specify how the data type types (such as string, integer, etc.) for Resources mapped to the
business data attribute types relevant for Alfabet business data. Business data attributes are
attributes that describe the business data. Business data attributes are captured the Attributes
property of the class BusinessData. The Type attribute of the class BusinessDataAttribute is
configured by your solution designer for your solution configuration via the protected enumeration

BusinessDataAttributeType. Each enumeration item defined for the protected enumeration

BusinessDataAttributeType constitutes a type of business data attribute.

To specify the XML object ServiceResourceMapping for integration with webMethods API Gateway:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object ServiceResourceMapping and select Edit XML.... The XML object

opens.

3) The names of the Resource in webMethods API Gateway may have one or more prefixes that you
may want to exclude from the mapping. To specify which prefixes to ignore, add a child XML

element PrefixesToIgnoreOnResourceMapping to the root XML element

ServiceResourceMapping.

4) For each prefix that you want to specify, add a child XML element Value to the XML element

PrefixesToIgnoreOnResourceMapping. In the XML element Value, enter the prefix that

should be ignored.

For example, a Resource named Employee may have a name that constitutes the path
in the API gateway where the Resource is located. For example, the name of the looks
like a resource path such as <StoreName>/<APIName>/Employee. In this case, you
may want to add the ResourceEmployee as a business data to A but ignore the pre-
fixes Store and API when. In this case, you would specify:

...

<PrefixesToIgnoreOnResourceMapping>

<Value>store</Value>

<Value>api</Value>

</PrefixesToIgnoreOnResourceMapping>

5) For each rule to map the Resource to business data, create an XML element ResourceMapping.

Configure the following XML attributes for the XML element ResourceMapping:

• Class: Enter BusinessData to search for existing business data to map to. Enter
BusinessObject to search for existing business objects for which a new business data
should be created. New business objects cannot be created in the context of this
configuration.

• Priority: Enter an integer to specify the priority of this resource mapping. The resource
mapping definition with Priorty="1" will be searched for first, Priorty="2" will be searched
second, etc.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 76

• Properties: Specify one or more object class properties of the business data/business
object that must be searched to find a match. The name of the Resource typically uses the
following syntax: {Name}\{Property1}\{Property2}. You can specify multiple object
classes to facilitate finding a match. For example, Properties="{Name}/{Version}".

• MatchType: Enter FullString if all values in the XML attribute Properties must be met in
order to find the business data or business object. Enter SubString if only some of the
values in the XML attribute Properties must be met in order to find the business data or
business object. If no match is found, the Resource will be ignored and business data will not
be updated/created.

6) To map the data property information for business data, create an XML element

DataTypeMappings.

7) For each object class stereotype of the class Service specified in the XML element

AlfabetStereotype XML object APIGatewayConfig, create an XML element

DataTypeMapping that is a child of the XML element DataTypeMappings.

8) In the XML element DataTypeMapping, create an XML attribute AlfabetStereotype and enter

the name of the object class stereotype configured for the class Service that you want to
specify.

9) In the XML element DataTypeMapping, create an XML element DataType for each property

type that is relevant for the object class stereotype specified in the XML attribute
AlfabetStereotype. Alfabet property types are String, Boolean, Date, Integer, Text, etc.
The property type is specified in the Property Type attribute for each relevant property of the
object class Service. (For example, the Name and Version properties for the class
BusinessData both have the Property Type = String.) Configure the following XML attributes

for the XML element DataType:

• AlfabetPropertyType: Enter the type for the Alfabet object class property (String,
Boolean, Date, Integer, Text, etc.) to map to the data type of the API specified in the XML
attribute ExternalPropertyType.

• ExternalPropertyType: Enter the data type for the API to map to the Alfabet object class
property type defined in the XML attribute AlfabetPropertyType.

10) In the XML element DataTypeMapping, create an XML element AttributeDataType for each

type of business data attribute that is relevant for Alfabet business data. Business data attributes
are attributes that describe the business data. Business data attributes are captured via the
Attributes property of the class BusinessData. The Type attribute of the class
BusinessDataAttribute is configured by your solution designer for your solution configuration

via the protected enumeration BusinessDataAttributeType. Each enumeration item defined

for the protected enumeration BusinessDataAttributeType constitutes a type of business

data attribute. Configure the following XML attributes for the XML element AttributeDataType:

• AlfabetAttributeType: Enter the enumeration item specified for the protected

enumeration BusinessDataAttributeType to map to the Resource data type specified

int the XML attribute ExternalPropertyType.

• ExternalPropertyType: Enter the Resource data type to map to the business data
attribute type specified in the XML attribute AlfabetPropertyType.

11) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 77

Chapter 9: Configuring Interoperability with Google's Apigee API
Platform Tools

Software AG offers interoperability between the Alfabet product and Google's Apigee™ product so that your
enterprise can review and test APIs as planned technical services in the Alfabet user interface. The Apigee
product serves as a platform to design, monitor, and publish APIs. You can configure interoperability be-
tween Alfabet and Apigee and thus provide integrated functions to import APIs to Alfabet as planned tech-
nical services, document and describe those planned technical services, and export the modified technical
service definition back to Apigee.

APIs may be imported in the Alfabet user interface via the Technical Services Registry Services view
(COMSR_Services) or the Technical Services Registry Services - Filtered (COMSR_ServicesExt) view.
Once the technical services have a specified release status, they can be exported from Alfabet to Apigee in
the user interface via the Technical Services view (COM_TechServices) view. By the click of a button,
users can navigate from Alfabet to Apigee and view the API definition directly in the Apigee interface.

APIs may also be imported to Alfabet by means of an ADIF import scheme. Technical services
cannot be exported via an ADIF scheme to Apigee. If APIs shall be imported via ADIF, then the
ADIF scheme must be created via an assistant. The assistant defines the correct import of data
from Apigee to temporary tables in ADIF. Further configuration is required in order to update the
Alfabet database tables with the data in the temporary database tables. The import may include
mappings that are not included in standard mapping via the functionalities on the user interface.
For more information, see Creating an ADIF Import Scheme for Import from Apigee below.

Apigee API proxies and their references are mapped to predefined object classes in Alfabet. When an API is
imported to Alfabet via the views in the Alfabet user interface, a technical service will be created in Alfabet.
If any endpoints or methods are specified for the API, objects of the object classes specified in the table
below will be created in Alfabet:

Apigee Ob-
ject

Alfabet Object Class

API Proxy Technical Service (Service)

Please note that additional specification of the mapping of APIs to technical services
must be configured in the XML object APIRepositoryConfig.

Endpoint Technical Service Operation (ServiceOperation)

Target End-
point

Business Data (BusinessData)

Please note that additional specification of the mapping of target endpoints to business
data must be configured in the XML object ServiceResourceMapping.

Method Technical Service Operation Method (ServiceOperationMethod)

Method Pa-
rameter

Technical Service Operation Method Parameter (ServiceOperationMethodParam-
eter)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 78

The following information is available to configure interoperability with Apigee:

• Overview of the Configuration Required for Interoperability with Apigee

• Configuring the Class Model for Interoperability with Apigee

• Configuring Connections and API Proxy Mapping for Apigee Integration

• Sending Requests to Apigee via a Proxy Server

• Creating Apigee Data Connections

• Creating an ADIF Import Scheme for Import from Apigee

Overview of the Configuration Required for Interoperability with
Apigee

The following is an overview of all configuration steps required for interoperability with Apigee:

1) Configure object class stereotypes for the object classes Service, ServiceOperation, and
ServiceOperationMethod. You will later map the object class stereotypes of the class Service
to the API proxies available in Apigee. This is described in more detail in the section Configuring the
Class Model for Interoperability with Apigee.

2) Map the object class stereotypes for the object classes Service, ServiceOperation, and

ServiceOperationMethod in the XML object TechServiceManager. For each technical

service stereotype, specify which technical service operation stereotypes are permissible. For
each technical service operation stereotype, specify which technical service operation method
stereotypes are permissible. For more information, see the section Configuring Object Class
Stereotypes for Technical Services in the chapter Configuring Alfabet Functionalities Implemented
in the Solution Environment in the reference manual Configuring Alfabet with Alfabet Expand.

3) Configure release statuses for the object class Service as well as the object class stereotypes in

the XML object ReleaseStatusDefs. Please note that the release status HandoverStatus must

be specified in order to be able to export the technical services in Alfabet to Apigee. This is
described in more detail in the section Configuring the Class Model for Interoperability with Apigee.

4) Specify one or more connections to Apigee in the XML object APIRepositoryConfig. Here you

also specify how API proxies are mapped to the object class stereotypes configured for the object
class Service, and the HandoverStatus required for the technical services in order to export
them to Apigee. This is described in more detail in the section Configuring Connections and API
Proxy Mapping for Apigee Integration.

5) If server variables are used to configure the connection in the XML object

APIRepositoryConfig, the server variables must be specified for the server alias in the Alfabet

Administrator. For more information about configuring server variables, see the section
Configuring Server Variables for Integration and Interoperability Solutions.

6) Specify the mapping of data associated with target endpoints to the objects of the class Business

Data. This is specified in the XML object ServiceResourceMapping. This is described in more

detail in the section Configuring Connections and API Proxy Mapping for Apigee Integration.

7) The attributes Assembly and Assembly Class available for the ServiceRegistryManager

solution manager must be specified to ensure interoperability. The XML object

ServiceRegistryManager is available in Alfabet Expand.The following values must be specified:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 79

• Assembly : ITPlan

• Assembly Class : ITPlanSolution.GenericServiceRegistryManager

8) Create Apigee data connection objects in the Apigee Data Connection view in the Integration
Solutions Configuration functionality in the Alfabet user interface. An Apigee data connection
object should be created for each Apigee connection configured in the XML object

APIRepositoryConfig. The Apigee data connection objects allow a user to specify the

connection to the relevant Apigee instance to use when exporting/synchronizing a technical
service in the Technical Services page view (COM_TechServices). The creation of Apigee data
connection objects is described in the section Creating Apigee Data Connections.

9) .The relevant user profiles must be configured to include the Technical Services Registry
Services - Filtered page view (COMSR_ServicesExt) available on the root node of the
Components explorer (COM_Explorer) and Technical Services page view (COM_TechServices)
available in the Components object view. (This view is only available for components of the type
Service). The Technical Services Registry Services page view (COMSR_Services) available on
the root node of the Components explorer (COM_Explorer) should not be visible for the user
profiles accessing webMethods API Portal. For more information about configuring user profiles,
see the chapter Configuring User Profiles for the User Community in the reference manual
Configuring Alfabet with Alfabet Expand.

10) If APIs are to be imported to Alfabet by means of ADIF import, you must create an ADIF import
scheme using the ApigeeImport_Assistant in order to import the APIs to temporary database
tables. Your enterprise must configure the update of the Alfabet database tables with the data in
the temporary database tables. The ADIF import must then be executed via one of the available
import methods. For more information about creating the ADIF import scheme via the assistant,
see Creating an ADIF Import Scheme for Import from Apigee. The configuration of ADIF import
schemes and the execution of ADIF imports are described in detail in the reference manual Alfabet
Data Integration Framework.

Configuring the Class Model for Interoperability with Apigee

The following configuration is required in order to provide interoperability with Apigee:

• Configure object class stereotypes for the object class Service. Each API proxy type that should be
displayed in Alfabet must be mapped to an object class stereotype of the class Service in the XML

element AssetTypeMappings in the XML object APIRepositoryConfig. Therefore, before the

XML object APIRepositoryConfig can be specified, you must first configure the relevant object

class stereotypes for the class Service. For detailed information about how to configure object
class stereotypes, see the section Configuring Object Class Stereotypes for Object Classes in the
chapter Configuring the Class Model in the reference manual Configuring Alfabet with Alfabet
Expand.

For example, the object class stereotypes for the object class Service could be specified as follows:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 80

• Configure object class stereotypes for the object class ServiceOperation. Each endpoint
associated with an imported API will be created as a technical service operation in Alfabet.

• Configure object class stereotypes for the object class ServiceOperationMethod. Each method
associated with an imported API will be created as a technical service operation method in Alfabet.

• Configure the mapping of technical service stereotypes (based on class Service), technical service
operation stereotypes (based on class ServiceOperation), and technical service operation method
stereotypes (based on class ServiceOperationMethod) in the XML object

TechServiceManager. For each technical service stereotype, specify which technical service

operation stereotypes are permissible. For each technical service operation stereotype, specify
which technical service operation method stereotypes are permissible. For more information about
mapping the object class stereotypes defined for technical services and technical service
operations, see the section Configuring Object Class Stereotypes for Technical Services in the
reference manual Configuring Alfabet with Alfabet Expand.

• Configure release statuses for the object class Service as well as all relevant object class
stereotypes for the object class Service. Please note that the release status HandoverStatus
must be specified in order to be able to export the technical services in Alfabet to Apigee. Please
keep the following in mind:

• The release status set for each relevant object class stereotype must be configured in the

XML object ReleaseStatusDefs. A release status definition must be created for the object

class Service as a whole as well as each object class stereotype. The release status
definition for the object class must include the complete set of release statuses configured
for its object class stereotypes. The release status definition for the object class stereotype
should contain only the release statuses relevant for the object class stereotype as well as
the sequences of release statuses that are available in order to reach a specific target release
status. For more information about configuring release statuses, see the section Configuring
Release Status Definitions for Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

Configuring Connections and API Proxy Mapping for Apigee Inte-
gration

Multiple connections to Apigee can be defined in order to address the needs of federated organizations.

The XML object APIRepositoryConfig allows you to configure the connections to Apigee instances as

well as how the APIs should be imported to Alfabet. You can configure the information necessary so that
users can import and export APIs to Alfabet in the Alfabet user interface and/or how to import the APIs via
an ADIF import scheme. Please note the following:

• Apigee API proxies may be imported via the Technical Services Registry Services view
(COMSR_Services) or the Technical Services Registry Services - Filtered (COMSR_ServicesExt)
view. If the import of APIs should occur via the Alfabet user interface, you must map the API proxy
types to the relevant object class stereotypes configured for the class Service in the XML object

APIRepositoryConfig. You must also specify the relevant HandoverStatus release status that a

technical service must have in order to be exported from Alfabet to Apigee.

If you want to enter a string that contains special characters in the XML object APIReposito-
ryConfig, you must replace the special characters with respective XML compliant code, for ex-
ample:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 81

• > for >

• < for <

• " for "

• [for [

•] for]

The configuration of the connections is carried out in the XML object APIRepositoryConfig by means of

the root XML element APIRepositoryConfig and its child XML element RepositoryConnections.

Once the configuration of the XML object APIRepositoryConfig is complete, connection objects must

also be created in the Apigee Data Connections view available in the Integration Solutions Configura-
tion functionality in the Alfabet interface.

The root XML element APIRepositoryConfig has two child elements:

• Proxy: This XML element allows you to configure how to send requests to Apigee instances via a

proxy server. The configuration of the XML element Proxy is described in the section.

• RepositoryConnections: This XML element allows you to configure multiple connections to

Apigee repositories. A child XML element RepositoryConnection should be configured for each

connection to an Apigee repository. Each XML element RepositoryConnection has attributes for

the definition of the connection data to connect to the Apigee repository and a child element

AssetTypeMappings, which allows you to specify the mapping of API Proxy types from Apigee to

Alfabet when imported via the Alfabet user interface.

The XML object usually includes an example definition. In addition, a template is available via the
attribute XML Template of the XML object. The template can be copied to the XML object to
avoid having to write the configuration manually. The following information describes a configu-
ration from scratch. With a sample configuration, you must edit the existing XML elements rather
than add them to the XML configuration.

You can configure multiple connections from Alfabet to multiple Apigee repositories. To define a connec-
tion to an Apigee repository:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the XML object APIRepositoryConfig and select Edit XML.... The XML object opens.

The XML element Proxy allows you to configure how to send requests to Apigee in-
stances via a proxy server. This is optional. If you have configured multiple connections
and each connection shall use a different proxy, you can add additional proxies to your
proxy configuration and specify the relevant proxy definition in the Apigee connection
configuration. The configuration of the XML element Proxy is described in the section
Sending Requests to Apigee via a Proxy Server.

3) Add a child XML element RepositoryConnections to the root XML element

APIRepositoryConfig.

4) Add a child XML element RepositoryConnection to the XML element

RepositoryConnections for each repository connection that you will define.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 82

5) Configure a connection to each Apigee repository by setting the following XML attributes for the

XML element RepositoryConnection:

• Name: Enter a unique name for the connection to the Apigee repository.

• Repository: Enter the name of the Apigee repository on the Apigee instance that you would
like to access with this connection.

• ServerURL: Enter the URL of the Apigee Edge RESTful management API server without the
endpoint specification or enter the relevant server variable name.

In some of the XML attributes, server variables can be used to read the value of the
attribute at runtime from the server alias configuration of the Alfabet Web Applica-
tion when a connection to API Portal is established. For more information about us-
ing server variables, see the section Configuring Server Variables for Integration and
Interoperability Solutions.

• UserName: Enter your enterprise's email address for access to the Apigee Edge RESTful
management API or enter the relevant server variable name.

• Password: Enter your enterprise's password for access to the Apigee Edge RESTful
management API or enter the relevant server variable name.

• ServiceViewURL: Enter the prefix for the complete link when navigating to the Apigee user
interface from Alfabet when the user clicks the Open Service's View in Service Registry
button in the Technical Services Registry Services - Filtered page view. Enter the URL to
access the service view in Apigee or enter the relevant server variable name. For example:
https://apigee.com/platform)

• MaxThreadCount: Enter the maximum number of parallel threads for calls to Apigee. This
specification is optional. The default settings usually provide optimal import behavior. The
setting should only be changed if problems are encountered during integration.

• PageSize: The maximum number of API Proxy data imports via one thread. This specification
is optional. The default settings usually provide optimal import behavior. The setting should
only be changed if problems are encountered during integration.

• Timeout: Enter the number of minutes of user inactivity after which the connection to the
API portal should be terminated.

6) If API Proxies shall be imported to Alfabet via the Alfabet user interface, add an XML element

AssetTypeMappings to each XML element RepositoryConnection. For each asset type that

you want to import to Alfabet, specify a child XML element element AssetTypeMapping.

7) Configure each asset type mapping by setting the following XML attributes for the XML element
AssetTypeMapping:

• RepositoryAssetType: Enter the name of the Apigee API Proxy type that should be mapped
to the object class stereotype specified in the XML element AlfabetStereotype.

• HandoverStatus: Specify the release status that the technical services based on the object
class stereotype in the XML attribute AlfabetStereotype must have in Alfabet in order to
be updated to the Apigee repository. For more information about configuring release statuses
for Apigee interoperability, see the section Configuring Release Status Definitions for Object
Classes in the reference manual Configuring Alfabet with Alfabet Expand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 83

• AlfabetStereotype: Enter the name of the object class stereotype of the class Service in
Alfabet that should be mapped to the API portal asset type specified in the XML element
RepositoryAssetType.

8) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Sending Requests to Apigee via a Proxy Server

Optionally, you can configure the Apigee integration interface to connect to Apigee via a proxy server. This

requires the following additional configuration in the XML object APIRepositoryConfig for the reposi-

tory connection configuration described above:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click APIRepositoryConfig and select Edit XML.... The XML object with the your Apigee

data import definition opens.

3) Add a child XML element Proxy to the XML element APIRepositoryConfig.

4) Define the following XML attributes for the XML element Proxy:

• url: Define the URL of the proxy server.

• user: If required, enter the user name for access to the proxy server. The domain name for
authentication is defined separately with the XML attribute domain and must not be specified
as part of the user name.

• password: If required, enter the password for access to the proxy server.

• domain: If required, define the domain name that shall be used as part of the user name for
authentication at the proxy server.

5) In the toolbar of Alfabet Expand, click the Save button to save your changes.

If you have configured multiple repository connections and each repository connection shall use a different
proxy, you can add additional proxies to your proxy configuration and refer to one of the proxies in the re-
pository connection configuration. The proxy definition above will be used as default if no proxy is assigned
to a data connection. The use of an additional proxy requires the following configuration:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click APIRepositoryConfig and select Edit XML.... The XML object with the yourApigee

repository connection definition opens.

3) Add a child XML element AdditionalProxies to the XML element Proxy.

4) For each additional proxy you want to define, add a child XML element AdditionalProxy to the
XML element AdditionalProxies and define the following XML attributes for the XML element
AdditionalProxy:

• Name: Define a unique name for the additional proxy. This name is used to refer to the proxy in
the data connection configuration.

• url: Define the URL of the proxy server.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 84

• user: If required, enter the user name for access to the proxy server. The domain name for
authentication is defined separately with the XML attribute domain and must not be specified
as part of the user name.

• password: If required, enter the password for access to the proxy server.

• domain: If required, define the domain name that shall be used as part of the user name for
authentication at the proxy server.

5) Add an XML attribute Proxy to each RepositoryConnection XML element that shall use one of

the additional proxies. The value of the XML attributeProxy must be identical to the value of the

Name XML attribute of the XML element AdditionalProxy.

6) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Creating Apigee Data Connections

The Apigee Data Connections view allows you to create semantic definitions for all relevant Apigee con-

nections that have been configured in the XML object APIRepositoryConfig. The Apigee data connec-

tion definitions are necessary to define which environments in an organization managed in Apigee the con-
nection will target. Users can specify which configured connection to use to synchronize Alfabet technical
services with Apigee assets. At least one Apigee data connection definition should be created for each con-

nection configured in the XML object APIRepositoryConfig.

Each time the Technical Services from Repositories page views (COMSR_ServicesExt or COMSR_Ser-

vices) is loaded, each configured connection in the XML object APIPortalConfig will be established and

the technical services based on Apigee assets will be synchronized with the data in the Apigee repository. If
the user wants to synchronize a selected technical service in the Technical Services page view
(COM_TechServices) with the corresponding Apigee asset, the relevant connection definition to use for
the synchronization must be selected in the Master Repository Connection field in the Operational Re-
positories tab of the Technical Service editor. If Alfabet should automatically synchronize the technical
services based on APIs from the Apigee repository when the Technical Services page view (COM_Tech-
Services) is loaded, you must select the Automatically Update Technical Services checkbox in the API
Portal Database Connection editor. If the checkbox is not selected, the user must explicitly update a se-
lected technical service.

To configure an Apigee data connection to display in the Connection field in the Service Registry tab of
the Technical Service editor:

1) Go to the Integration Solutions Configuration functionality and click the Apigee Data
Connection node in the Integration Solutions Configuration explorer.

2) In the view, click New > Create Apigee Data Connection.

If you have already defined a similar connection and want to take over the settings of
that connection for your new connection, you can alternatively click New > Creat
Apigee Data Connection as Copy and select the existing connection the new connec-
tion should base on from the selector that opens. The editor for the new connection will
then open with all settings identical to the copied connection and the name set to "Copy
of <base connection name>".

3) In the Apigee Data Connection editor, define the following fields as needed.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 85

Basic Data tab:

• ID: Alfabet assigns a unique identification number to each Apigee data connection. This
number cannot be edited.

• Name: Enter a unique name for the Apigee data connection. The name should help the user
synchronizing the technical service to identify the Apigee repository that will be targeted by
the connection.

• Release Status: Select the Apigee data connection's current release status.

• Description: Enter a meaningful description that will clarify the purpose of the Apigee data
connection.

• Background Color: Specify the background color to be used for technical services that are
associated with this Apigee data connection. In the Technical Services from Repositories
views, the colored rows represent assets for which technical services have been created in
Alfabet. In the Technical Services view, the colored rows represent technical services that
exist in Alfabet and have been exported to the operational repository.

• Foreground Color: Specify the foreground color to be used in conjunction with the
background color.

Authorized Access tab:

• Authorized User: Click the Search icon to assign an authorized user to the selected Apigee
connection. The authorized user will have Read/Write access permissions for the object and is
responsible for the maintenance of the object.

• Authorized User Groups: Select one or more checkboxes to assign Read/Write access
permissions to all users in the selected user group(s).

Connection tab:

• Apigee Connection : Select the relevant connection configured in the XML element

RepositoryConnection in the XML object APIRepositoryConfig that will be established

when the user selects this Apigee data connection in the Master Repository Connection
field in the Operational Repositories tab of the Technical Service editor.

• Organization: Enter the name of the organization in Apigee to that the connection shall be
established.

• Deployed Environments: After having selected the organization in the Organization field,
click the Get Environments button to view all implemented Apigee environments in the
Apigee organization. Select the relevant environment containing the API Proxies to be
integrated with technical services in Alfabet via the Apigee data connection.

• Consider Revision: Select the checkbox if you would like to import any other than the latest
revision of API Proxies. If the checkbox is selected, a user can choose between all revisions in
the selected environments for integration. Export to Apigee will create an API Proxy with
revision 1. If the checkbox is not selected, the latest revision of an API Proxy in the selected
environments will be used for integration.

• Proxy Name Template: Technical services created in Alfabet on basis of API Proxies in
Apigee will be named according to the naming convention defined with this field. The
definition can contain the following variables:

• {Name} will be substituted with the API Proxy name.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 86

• {Version} will be substituted with the API Proxy version.

By default, the naming convention without considering revisions is: {Name}_V{Version}. If revisions are
considered, the specified name will be amended with "r.RevisionNumber ".

4) Repeat this for all configured Connection elements in the XML object APIPortalConfig that

users should be able to select in the Connection field in the Operational Repositories tab of the
Technical Service editor.

Creating an ADIF Import Scheme for Import from Apigee

Data from Apigee can be imported via ADIF import jobs to import all data in batch. ADIF import jobs can be
used to integrate additional data from Apigee, like Policies or Statistics or integrate the Apigee data in a
way that differs from the standard integration provided by the standard functionalities for integration of
technical service data.

Part of the ADIF import scheme must be created via an assistant as described below. Prior to creating the
ADIF import scheme, the following configuration steps need to be performed:

• Configuring Connections and API Proxy Mapping for Apigee Integration

• Creating Apigee Data Connections

To create an ADIF import job via the assistant:

1) In the ADIF tab in Alfabet Expand, right-click the ADIF Schemes root node in the explorer or any
sub-folder and select Create Import Scheme. The new import scheme is added to the explorer.
The attribute window of the new import scheme is displayed on the right.

2) In the attribute window, set the following attributes for the ADIF import scheme:

• Name: Enter a unique name. The name is used to identify the ADIF import scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Assistant : Select ApigeeImport_Assistant from the drop-down list.

• Import File Required : Ensure that the value False is set.

• Commit After Run : If set to True, the result of the data import is written persistently to the
Alfabet database. If set to False, the import process will be rolled back after execution and no
changes will be written to the database. Configuration of the automatic start of workflows
during import is ignored when Commit After Run is set to False. It is recommended that you
set Commit After Run to False for a new import scheme to allow debugging without the risk
of corrupting the database. After the successful testing of the data import and verification
that the resulting changes to the Alfabet database are as expected, you can reset the
Commit After Run attribute to True to perform regular data import.

Please note the following:

• Setting the Commit After Run attribute rolls back all changes to data
records in existing tables caused by DML statements. The creation or deletion
of tables is not included in the roll back. For example, if you test an ADIF
scheme that is configured to persistently write temporary tables to the
database, these temporary tables will be created persistently even if Commit

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 87

After Run is set to False. SQL commands of the type OnActivate are also

excluded from roll back.

• When new objects are created during an ADIF import job, the data bind
mechanism assigns REFSTR values for the new objects. When Commit After
Run is set to False, the objects are not created in the database, but
nevertheless the REFSTR values are regarded as in use and will not be used
for data bind in the next ADIF run unless the Alfabet Server or Alfabet Expand
application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the

option Commit After Run is set to False for the import scheme.

• Drop Temp Tables : If set to True, all temporary tables are dropped after import. Only the
changes to the Alfabet database are stored persistently. If set to False, the temporary tables
are kept in the database after import is finished. Storing temporary tables persistently is only
required for special import/export cycles designed for data manipulation that require input
from the temporary tables of a previously set import. In most cases, setting this attribute to
True is recommended to clean the database of data that is not part of the Alfabet meta-
model.

3) In the explorer, right-click the node of the new ADIF import scheme and select Create ADIF
Scheme Details Using the Apigee Import Assistant. The assistant opens in your standard Web
browser.

4) In the Import Entry tab, specify the following:

• Import Entry Name: Enter a unique name for the import entry that will be created in the ADIF
scheme for import of the data from Apigee.

• Apigee Connection: Select the Apigee data connection that shall be used for data import
from the drop-down list of available Apigee data connections.

• Data to Import: Select the data that you would like to import from Apigee. You can import Api
Proxies, Application, Statistics, Policies, API Products, Developers and Companies.

5) If you have selected Statistics to be imported, you must further define the way statistics are
imported in the Statistics Filter tab:

• Environment: Select the relevant Apigee environment for generation of statistic data.

• Dimensions: Select the dimensions that shall be included into the data.

• Metrics: Select the metrics that shall be calculated for the selected dimensions.

• Functions: Select an aggregate function to calculate the data. You can return the average
(avg), the maximum (max), minimum (min), or sum of all data.

• Time Unit: Select the interval that shall be used for calculation of times and dates.

• Transaction History Period: Enter the number of days in the past for that the statistics will
be imported.

• Filter Query: If applicable, enter an Apigee filter query to filter for API proxies to be included
into the statistics.

6) Go to the Import Entry tab, click Save Import Entry. The import entry is listed in the field Select
Import Entry to Edit/Remove.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 88

If you have added data in the Statistics Filter tab, you do not have to go back to the Im-
port Entry tab. You can save the ADIF import entry resulting from your definition di-
rectly via the Save Import Entry button in the Statistics Filter tab.

7) You can now do any of the following:

• Create a new import entry: Specify the data as described above in the respective fields with
a different name in the Import Entry Name field and click Save Import Entry to save the
next import entry.

• Edit the existing import entry: Select the checkbox next to the name of the import entry.
Alter the data in the respective fields of the editor and click Save Import Entry to save the
changes for the existing import entry.

• Delete the existing import entry: Select the checkbox next to the name of the import entry.
Click Remove Selected Import Entry.

8) Click the OK button to trigger the ADIF scheme to fetch the specified content from Apigee and
close the Apigee Import Assistant. The temporary tables will be generated and displayed below
the import scheme node in the explorer. Or click Cancel to close the editor without triggering the
execution of the import scheme. If you click Cancel, your settings in the Apigee Import Assistant
will not be saved.

9) Close the browser window and execute Meta-Model > Reread from Database in Alfabet Expand.
You will then see all automatically generated ADIF elements in the ADIF scheme. Each ADIF import
entry will have data import to temporary tables defined via the attribute elements in the
Attributes folder. The import to the standard Alfabet database tables is not included into the
configuration.

10) To complete the integration of the data to the Alfabet database, additional configuration of the
import scheme is required to map the imported Apigee data in the temporary tables to temporary
tables that will be created for the relevant Alfabet object classes and objects. The configuration
required for this last step of the import will depend on how your enterprise chooses to implement
the Apigee data in Alfabet. For information about the configuration options available via ADIF
import schemes, see the reference manual Alfabet Data Integration Framework.

After having defined the ADIF scheme, you must execute it using any of the methods described in the
chapter Configuring ADIF Schemes of the reference manual Alfabet Data Integration Framework.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 89

Chapter 10: Configuring the Creation/Export of Technical Ser-
vices Based on WSDL and OpenAPI Specification Files

Technical services may be created based on WSDL files as well as OpenAPI Specification Swagger files. The
Technical Services view (COM_TechServices) includes the options Create Technical Service(s) from
WSDL and Create Technical Service(s) from OpenAPI Specification. Technical services in Alfabet can
also be exported to WSDL and JSON formats based on the options Export to WSDL and Export to OpenAPI
Specification.

Alfabet supports only Swagger 2.0 JSON to create technical services. Earlier versions of Swagger
are not supported.

For more information regarding the configuration of technical services, see the section Configur-
ing Object Class Stereotypes for Technical Services in the chapter Configuring Alfabet Function-
alities Implemented in the Solution Environment in the reference manual Configuring Alfabet
with Alfabet Expand.

Please note the following configuration requirements to make this possible

• The XML object TechServiceManager must be configured as described below: in order to map

the relevant stereotypes for the class Service has been extended in order to configure the creation
of technical services based on WSDL files and OpenAPI Specification-compliant Swagger files. A new
XML element FileExtension has been added to the XML element Stereotype available to specify
the object class stereotype for the class Service. The value ".wsdl" should be entered in the XML
element FileExtensions specified for a relevant object class stereotype to enable the Create
Technical Service(s) from WSDL and Export to WSDL options in the Technical Services view
(COM_TechServices). The value ".json" should be specified to enable t the Create Technical
Service(s) from OpenAPI Specification and Export to OpenAPI Specification options in the
Technical Services view.

• For each technical service stereotype, specify which technical service operation stereotypes
are permissible.

• Below the root XML element TechServiceManager, create a child XML element

Stereotype and specify the following XML attributes:

The following example displays the mapping for the stereotype SOAPService con-
figured for the object class Service:

<TechServiceManager>

<Stereotype ClassName="Service" Name="SOAPService"
FileExtension=".wsdl">

<Stereotype ClassName="ServiceOperation"
Name="SOAPOperation">

<Stereotype ClassName="ServiceOperationMethod"
Name="AHTTPPOST" MethodType="HTTPPOST"

<Stereotype ClassName="ServiceOperationMethod"
Name="AHTTPGET" MethodType="HTTPGET" />

<Stereotype ClassName="ServiceOperationMethod"
Name="ASOAP12" MethodType="SOAP12"/>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 90

<Stereotype ClassName="ServiceOperationMethod"
Name="ASOAP" MethodType="SOAP"/>

</Stereotype>

</Stereotype

</TechServiceManager>

• ClassName: Enter Service (or SolutionService) to create the parallel mapping for
solution planning):

• Name: Enter the technical name of the object class stereotype defined for the object
class Service (or SolutionService). This is the name defined in the XML attribute
Name in the Stereotypes attribute for the object class.

You must spell the technical name of the technical service stereotype exactly
as it is spelled in the Stereotypes attribute of the relevant object class.

• FileExtension: Enter ".wsdl" for a relevant object class stereotype to enable the
Create Technical Service(s) from WSDL and Export to WSDL options in the
Technical Services view (COM_TechServices). ENE ".json" for a relevant object
class stereotype to enable the Create Technical Service(s) from OpenAPI
Specification and Export to OpenAPI Specification options in the Technical
Services view.

• For each technical service operation stereotype, specify which technical service operation
method stereotypes are permissible.

• If your enterprise supports solution planning and technical services and technical service
operations are included as part of the to-be architecture, then you must create an identical
configuration for the corresponding solution object classes SolutionService,
SolutionServiceOperation, and SolutionServiceMethod.

• The file extensions.wsdl and.json must not be in the black list specified in the XML object

FileExtensions. If a whitelist of file extensions is enabled, the file extensions must be included in

the white list. The download of a ZIP file containing multiple WSDL or JSON files is not possible. For
more information about configuring the permissibility of file extensions, see the section Configuring
the Permissibility of Files and Web Links in Alfabet in the reference manual Configuring Alfabet with
Alfabet Expand.

• A protected or custom wizard must be specified in the Wizard attribute in the relevant class setting
for the class Service in order to create a technical service based on a WSDL or JSON file. (Note that
the definition should NOT be made for the object class stereotype for the class Service.) The
specification of the wizard is required in order to ensure that a pre-wizard step is implemented that
allows the relevant file to be imported to Alfabet in order to create the technical service.

• A protected or custom wizard may be specified in the Wizard attribute in the relevant class setting
for the class Service in order to create a technical service based on WSDL or an Open API
specification.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 91

Chapter 11: Configuring Integration of Data from Amazon Web
Services

Alfabet 10.9 provides an interface to Amazon Web Services that can fetch data about the application and
services footprint your company is running in the Amazon Web Services infrastructure (for example, the
components that are provided by Amazon Web Services to your company) and create and update objects in
the Alfabet database based on this data. How the data is integrated in the Alfabet database is not precon-
figured. Customers specify the import logic as needed. The interface to Amazon Web Services (AWS inter-
face) requires the following configuration:

• The connection to Amazon Web Services must be configured in the XML object

AmazonWebServicesConfig in Alfabet Expand.

• The data to import must be further specified in the XML object AmazonWebServicesConfig in

Alfabet Expand.

• Import of data from Amazon Web Services is managed via an ADIF import scheme created via an
assistant that implements the required basic configuration. The assistant creates a number of ADIF
import sets in the ADIF import scheme. The import sets are configured to import data from Amazon
Web Services to temporary database tables in the Alfabet database. This ADIF import scheme must
be amended with the customer-defined import logic to update the database tables of the Alfabet
object class model with the data in the temporary tables.

To execute data import from Amazon Web Services, you must start the ADIF import triggered by the ADIF
import scheme. The ADIF import then executes both data retrieval from Amazon Web Services and data in-
tegration into the Alfabet database. The ADIF import should be executed in regular intervals to ensure data
consistency between Amazon Web Services and Alfabet.

Information about the execution of ADIF schemes is provided in the reference manual Alfabet
Data Integration Framework.

The following sections describe the configuration steps for the Amazon Web Services interface in the re-
quired order of execution:

• Configuring the Connection to Amazon Web Services

• Sending Request to Amazon Web Services via a Proxy Server

• Configuring Integration of Amazon Web Services Data into the Alfabet database

Configuring the Connection to Amazon Web Services

The connection to the Amazon Web Services must be defined in the XML object AmazonWebServices-
Config. Multiple connections to Amazon Web Services can be configured. Data will be imported from all

defined Amazon Web Services via the same ADIF import scheme.

The general structure of the XML in the XML object AmazonWebServicesConfig is the following:

<AmazonWebServicesConfig>

<DataConnections>

<DataConnection

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 92

Name="Account1"

IsActive="true"

AWSAccessKey="$AWSAccessKey"

AWSSecretKey="$AWSSecretKey"

AWSAccount="$AWSAccountNumber">

<Regions>

<Region>eu-west-1</Region>

<Region>us-west-1</Region>

<Region>ap-southeast-1</Region>

</Regions>

</DataConnection>

</DataConnections>

</AmazonWebServicesConfig>

The root XML element AmazonWebServicesConfig has a child XML element DataConnections. The XML

element DataConnections can contain multiple child XML element DataConnection, each defining a

connection to a different access to the Amazon Web Services.

To define connection to the Amazon Web Services:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click AmazonWebServicesConfig and select Edit XML.... The XML object opens.

The XML object usually includes an example definition. In addition, a template is available
via the attribute XML Template of the XML object. The template can be copied to the
XML object to avoid having to write the configuration manually. The following descrip-
tion describes a configuration from scratch. With a sample configuration, you have to
edit rather than add the XML elements described in the following.

3) Add a child XML element DataConnections to the root XML element
AmazonWebServicesConfig.

4) Add a child XML element DataConnection to the XML element DataConnections and define the
following XML attributes for the DataConnection element:

• Name: The name of the connection to the Amazon Web Services that is used to identify the
connection in the ADIF scheme configuration.

• IsActive: Set to true if data should be imported from the Amazon Web Services instance.
Set to false if data should currently not be imported from the Amazon Web Services
instance.

• AWSAccessKey: The access key ID of the access key for connection to the Amazon Web
Services.

• AWSSecretKey: The secret access key for connection to the Amazon Web Services.

• AWSAccount: Enter the ID of your Amazon Web Services account.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 93

Please note the following:

• In the XML elements for the definition of the Amazon Web Services connection
server variables can be used to read the value of the XML attribute at runtime
from the server alias configuration of the Alfabet Web Application when a
connection to Amazon Web Services is established. For information about server
variables, see Configuring Server Variables for Integration and Interoperability
Solutions.

• Amazon recommends to change the access key in regular intervals. For security
reasons, you should change your keys and update the configuration of the
AWSSecretKey and AWSAccessKey XML attributes accordingly.

5) Optionally, add a child XML element Regions to the XML element DataConnection to define the
region where the Amazon Web Services is located. For each region, add a child XML element
Region to the XML element Regions and enter the amazon name of the region as text into this
XML element.

6) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Sending Request to Amazon Web Services via a Proxy Server

Optionally, you can configure the Amazon Web Services integration interface to send requests to the Ama-
zon Web Services via a proxy server. This requires the following additional configuration in the XML object

AmazonWebServicesConfig for the data import configuration described above:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click AmazonWebServicesConfig and select Edit XML.... The XML object with the your

Amazon Web Services data import definition opens.

3) Add a child XML element Proxy to the XML element AmazonWebServicesConfig.

4) Define the following XML attributes for the XML element Proxy:

• Url: Define the URL of the proxy server.

• UserName: If required, enter the user name for access to the proxy server. The domain name
for authentication is defined separately with the XML attribute domain and must not be
specified as part of the user name.

• Password: If required, enter the password for access to the proxy server.

• Domain: If required, define the domain name that shall be used as part of the user name for
authentication at the proxy server.

5) In the toolbar of Alfabet Expand, click the Save button to save your changes.

If you have configured multiple data connections and each data connection shall use a different proxy, you
can add additional proxies to your proxy configuration and refer to one of the proxies in the data connec-
tion configuration. The proxy definition above will be used as default if no proxy is assigned to a data con-
nection. The use of an additional proxy requires the following configuration:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 94

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click AmazonWebServicesConfig and select Edit XML.... The XML object with the your

Amazon Web Services data import definition opens.

3) Add a child XML element AdditionalProxies to the XML element Proxy.

4) For each additional proxy you want to define, add a child XML element AdditionalProxy to the
XML element AdditionalProxies and define the following XML attributes for the XML element
AdditionalProxy:

• Name: Define a unique name for the additional proxy. This name is used to refer to the proxy in
the data connection configuration.

• Url: Define the URL of the proxy server.

• UserName: If required, enter the user name for access to the proxy server. The domain name
for authentication is defined separately with the XML attribute domain and must not be
specified as part of the user name.

• Password: If required, enter the password for access to the proxy server.

• Domain: If required, define the domain name that shall be used as part of the user name for
authentication at the proxy server.

5) Add an XML attribute Proxy to each DataConnection XML element that shall use one of the

additional proxies. The value of the XML attributeProxy must be identical to the value of the Name

XML attribute of the XML element AdditionalProxy.

6) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring Integration of Amazon Web Services Data into the
Alfabet database

Data import from Amazon Web Services is performed by running an ADIF import scheme that triggers the
data transmission from Amazon Web Services on basis of the configured connection details, stores the in-
coming data into temporary tables in a predefined way, and integrates the data into the standard object
class tables of the Alfabet database as configured in the ADIF import scheme by the customer.

In the ADIF tab of Alfabet Expand, the import scheme can be configured using an assistant. When you open

the assistant, you can select one or multiple of the data connections defined in the XML object Amazon-
WebServicesConfig. When closing the assistant, the ADIF scheme automatically filled with the required

entries to read standard data from Amazon Web Services into temporary database tables. To define inte-
gration of the data into the Alfabet database, the entries resulting from the semi-automatic creation of the
ADIF import scheme elements must be amended with the information about how data from the temporary
tables in integrated into the Alfabet database. The configuration required for this last step of the import
highly depends on your demands.

This section only describes the handling of the Amazon Web Services assistant. Information
about how to configure an ADIF import scheme to write data from the temporary database tables
to the Alfabet database is given in detail in the reference manual Alfabet Data Integration Frame-
work and is not repeated here.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 95

Using the Amazon Web Services assistant does not only provide semi-automatic configuration of the ADIF
import scheme. It also establishes the mechanisms required to open the connection to Amazon Web Ser-
vices and import the data when the ADIF import on basis of the ADIF import scheme is executed.

After having defined a valid configuration for data import in the XML object AmazonWebServicesConfig,
you must define a new ADIF import scheme to configure data integration using the Amazon Web Services
import assistant:

1) In the ADIF tab in Alfabet Expand, right-click the ADIF Schemes root node in the explorer or any
sub-folder and select Create Import Scheme. The new import scheme is added to the explorer.
The attribute window of the new import scheme is displayed on the right.

2) In the attribute window, set the following attributes for the ADIF import scheme:

• Name: Enter a unique name. The name is used to identify the ADIF import scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Assistant: Select AWSImport_Assistant from the drop-down list.

• Import File Required : Select False.

• Commit After Run : If set to True, the result of the data import is written persistently to the
Alfabet database. If set to False, the import process will be rolled back after execution and no
changes will be written to the database. Configuration of the automatic start of workflows
during import is ignored when Commit After Run is set to False. It is recommended that you
set Commit After Run to False for a new import scheme to allow debugging without the risk
of corrupting the database. After the successful testing of the data import and verification
that the resulting changes to the Alfabet database are as expected, you can reset the
Commit After Run attribute to True to perform regular data import.

Please note the following:

• Setting the Commit After Run attribute rolls back all changes to data
records in existing tables caused by DML statements. The creation or deletion
of tables is not included in the roll back. For example, if you test an ADIF
scheme that is configured to persistently write temporary tables to the
database, these temporary tables will be created persistently even if Commit

After Run is set to False. SQL commands of the type OnActivate are also

excluded from roll back.

• When new objects are created during an ADIF import job, the data bind
mechanism assigns REFSTR values for the new objects. When Commit After
Run is set to False, the objects are not created in the database, but
nevertheless the REFSTR values are regarded as in use and will not be used
for data bind in the next ADIF run unless the Alfabet Server or Alfabet Expand
application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the

option Commit After Run is set to False for the import scheme.

• Drop Temp Tables : If set to True, all temporary tables are dropped after import. Only the
changes to the Alfabet database are stored persistently. If set to False, the temporary tables
are kept in the database after import is finished. Storing temporary tables persistently is only
required for special import/export cycles designed for data manipulation that require input
from the temporary tables of a previously set import. In most cases, setting this attribute to

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 96

True is recommended to clean the database of data that is not part of the Alfabet meta-
model.

3) In the explorer, right-click the node of the new ADIF import scheme and select Create ADIF
Scheme Details Using the AWS Import Assistant. A warning dialog is displayed.

Using the assistant with an existing, already configured ADIF import scheme will over-
write all automatically generated parts of the ADIF scheme. If changes have been made
to these import sets/entries, these changes will get lost.

4) Click Yes. The assistant opens in your standard Web browser.

5) In the field Select Data Connections to Execute, all XML elements DataConnection in your
AmazonWebServicesConfig XML object will be displayed. Click on each data connection for that
data shall be integrated with this ADIF import scheme.

6) After having selected all relevant DataConnection XML elements, click the button OK below the
field. A new page is displayed that reminds you to rescan the ADIF tree in Alfabet Expand.

7) Close the browser window and return to the ADIF tab of Alfabet Expand.

8) Right-click the ADIF import scheme and select Rescan Tree in the context menu. You will then see
all automatically generated ADIF elements in the ADIF scheme. Each ADIF import entry will have
data import to temporary tables defined via the attribute elements in the Attributes folder. The
import to the standard Alfabet database tables is not included into the configuration.

9) Configure the data integration to the standard Alfabet database tables according to your demands.
For information about the configuration options available via ADIF import schemes see the
reference manual Alfabet Data Integration Framework.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 97

Chapter 12: Configuring Integration of Data Between ServiceNow
and Alfabet

Alfabet provides an interface with ServiceNow to import data available in ServiceNow to Alfabet and vice
versa. This functionality allows you to import data about ServiceNow hosted services to the Alfabet data-
base in order to include them in your IT management and planning processes and to import data about
planned and approved services to ServiceNow.

Data transmission is performed via RESTful API calls that are triggered by Alfabet ADIF jobs. While the im-
port and export is triggered from Alfabet side, ServiceNow must still be configured to provide the required
access rights and, in case of import of data from ServiceNow into Alfabet, to provide the data in the re-
quired format. Please note that the configuration of the ServiceNow product is not included in this docu-
mentation. The documentation provided by Alfabet addresses the configuration required in Alfabet to inte-
grate data between ServiceNow and Alfabet. For details about configuring the ServiceNow product, please
consult the documentation delivered with the ServiceNow product.

Integration of Alfabet with ServiceNow will not work if authentication requests from Alfabet are
redirected to any SSO platform.

The following information is available:

• Configuring Integration of Data from ServiceNow

• Configuring Data Transmission from ServiceNow to Alfabet

• Configuring Integration of ServiceNow Data into the Alfabet Database

• Changing an Existing Configuration for ServiceNow Integration

• Configuring Integration of Alfabet Data Into ServiceNow

• Defining Data to Export from the Alfabet database Via a Configured Report

• Configuring Data Transmission from Alfabet to ServiceNow

• Configuring the ADIF Export Scheme for Data Export to ServiceNow

• Changing an Existing Configuration for ServiceNow Integration

• Sending Requests to ServiceNow via a Proxy Server

• Sending Requests to ServiceNow via an API Gateway

Configuring Integration of Data from ServiceNow

If you are using ServiceNow, you can import data about your ServiceNow hosted services into the Alfabet
database to include them into your IT management and planning processes. There is no predefined object
class for storing the incoming data. The object classes and object class attributes are relevant for storing
the information are completely customer configured via the integration interface.

Data about ServiceNow hosted services can be imported from ServiceNow database tables, ServiceNow
database views and ServiceNow reports. For integration of data from ServiceNow to the Alfabet database,
the existing interface must be configured with the following information:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 98

• Access information for establishing the connection to ServiceNow. Data transfer is done via RESTful
web services.

• Specification about the source and kind of data to be imported and HTTP transmission details.

• Mapping between ServiceNow data types and Alfabet data types.

• The object classes and object class properties that are the target of the import in the Alfabet
database and how object data is integrated into the existing object data in the Alfabet database.

The access to ServiceNow and the specification of data import is configured in the XML object Service-
NowImportConfig.

This configuration is required as prerequisite for the second configuration step that defines the creation
and update of object data in the Alfabet database. This data integration is done via an ADIF import and one
or multiple ADIF import schemes must be created and configured according to the requirements.

To execute data import from ServiceNow, you must start the ADIF import triggered by the ADIF import
scheme. The ADIF import executes both data retrieval from ServiceNow and data integration into the
Alfabet database. The ADIF import should be executed in regular intervals to ensure data consistency be-
tween ServiceNow and Alfabet.

Information about the execution of ADIF schemes is provided in the reference manual Alfabet
Data Integration Framework.

The following sections describe the configuration steps for the ServiceNow interface in the required order
of execution:

• Configuring Data Transmission from ServiceNow to Alfabet

• Configuring Integration of ServiceNow Data into the Alfabet Database

• Changing an Existing Configuration for ServiceNow Integration

Configuring Data Transmission from ServiceNow to Alfabet

Configuration of data import is done in the XML object ServiceNowImportConfig. The XML object al-

lows connections to multiple ServiceNow sources to be defined. The following displays the general struc-

ture of the XML in the XML object ServiceNowImportConfig:

<ServiceNowConfig>

<DataTransferMappings>

<DataTransferMapping>

<ServiceAccessInfo>...</ServiceAccessInfo>

<DataConnectivityInfo>...</DataConnectivityInfo>

</DataTransferMapping>

</DataTransferMappings>

<DataTypeMappings>...</DataTypeMappings>

The root XML element ServiceNowConfig of the XML objects contains two child elements:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 99

• DataTransferMappings: The XML element DataTransferMappings can contain one or more child
elements DataTransferMapping. Each child element DataTransferMapping contains the
definition of a connection to a different ServiceNow server. The definition includes the specification
of the connection to the REST API of the web services of the ServiceNow server in a child element
ServiceAccessInfo, and the specification of data to be transferred in a child element
DataConnectivityInfo. Different data transfer conditions can be defined for different data types
in the DataConnectivityInfo element.

• DataTypeMappings: The XML element DataTypeMappings contains the mapping of imported data
types to the data types that are valid in the Alfabet database. The data is converted to the specified
data types during data import. The data type definitions are valid for all data connections on all data
transfer mappings.

To define the data import from a ServiceNow server:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click ServiceNowImportConfig and select Edit XML.... The XML object opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template attribute of the XML object ServiceNowImportConfig. The
template can be copied to the XML object to avoid needing to write the configuration
manually. The following describes a configuration from scratch. With you begin with a
sample configuration, you must edit rather than add the XML elements.

3) Add a child XML element DataTransferMappings to the root XML element ServiceNowConfig.

4) Add a child XML element DataTransferMapping to the XML element DataTransferMappings
and define the following XML attribute for the DataTransferMapping element:

• Name: The name of the ServiceNow server connection that is used to identify the connection
in the ADIF scheme configuration.

• IsActive: Set to true if data should be imported from the ServiceNow instance. Set to
false if data should currently not be imported from the ServiceNow instance.

5) Add a child XML element ServiceAccessInfo to the XML element DataTransferMapping to
define the information required to establish a connection to the ServiceNow server.

6) Add an XML attribute AutomaticSwitchToBasic to the XML element ServiceAccessInfo and
set it to true to connect via basic authentication if OAuth authentication fails.

7) The information required to establish the connection to the REST API of the web services of the
ServiceNow server must be added as strings to the following child XML elements, which have to be
added to the ServiceAccessInfo XML element:

• service: The URL of the ServiceNow instance.

• apipath: The path to the REST API at the ServiceNow instance. Enter /api/now/v1/.

• oauthpath: OAuth is required for authentication at ServiceNow. You must specify the path to
the OAuth endpoint with this XML element.

• username: The user name for access to ServiceNow.

The user must have the required access permissions to perform the following api
calls:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 100

• Authentication call: https://<BaseAddress>/oauth_token.do

• Reading of tables: https://<BaseAddress>/<tableName>.do?SCHEMA

• Reading of database views:
https://<BaseAddress>/<databaseviewname>.do?CSV&sysparm_record_coun
t=1

• Reading of reports:
https://<BaseAddress>/sys_report_template.do?CSV&sysparm_record_coun
t=1&jvar_report_id=<reportid>

• Reading of reports:
https://<BaseAddress>/api/now/v1/table/sys_report/<reportID>

Sufficient access would for example be granted with the following access rights:

• rest_service for read access to data via a RESTful API call.

• soap_query for read access to schema information of ServiceNow database
tables or database views. This permission is not required for import from
reports.

• itil for read access to the relationship tables cmdb_rel_ci and
cmdb_rel_type.

• itil_admin

• password: The password for access to ServiceNow.

• client_id: Enter the Client ID for the OAuth endpoint at ServiceNow.

• client_secret:Enter the Client Secret for the OAuth endpoint at ServiceNow into this XML
element.

Server variables can be used to define the ServiceNow server connection. The server
variables read the value of the XML element at runtime from the server alias configura-
tion of the Alfabet Web Application when a connection to ServiceNow is established. For
information about server variables, see Configuring Server Variables for Integration and
Interoperability Solutions.

8) Add a child XML element DataConnectivityInfo to the XML element DataTransferMapping to
define the information required to request data from the ServiceNow server. The XML element
DataConnectivityInfo. Define the default data transmission parameters for the data requests
by setting the following XML attributes of the XML element DataConnectivityInfo:

• DefaultPageSize: You can define a limit for data to be transmitted simultaneously on the
data connection for the import from database tables and database views containing many
records. Enter the number of records that shall be transmitted simultaneously. This value will
be valid for all data connections that do not have a PageSize attribute defined. If a data
limitation is not defined for the data connection nor via the XML attribute DefaultPageSize,
the value 100 will be set per default. The XML attribute DefaultPageSize is not supported
for import from reports.

• DefaultTimeout: Define the default HTTP request timeout that shall be used for all data
connection that do not include a timeout definition via the XML attribute Timeout of the XML
element DataConnection. If a timeout is not defined for the data connection nor via the XML

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 101

attribute DefaultTimeout, the default value defined for the Alfabet Web Application will be
used.

• DefaultMaxRecordCount: Define the maximum number of records that shall be transmitted
for a request to ServiceNow on a data connection if the data is read from a ServiceNow report.
The value defined here is used as the default for all data connections that do not have a
maximum number of records to be transmitted defined via the XML attribute
MaxRecordCount of the XML element DataConnection. If the maximum number of records
is not defined for the data connection nor via the XML attribute DefaultMaxRecordCount,
the value 1000 will be set per default. The XML attribute DefaultMaxRecordCount is not
supported for the import from database tables and database views.

9) Add one or multiple child elements DataConnection to the XML element
DataConnectivityInfo. Each XML element DataConnection bundles data to be imported via
one request to the ServiceNow server. Define the data transmission parameters for the data
request by setting the following XML attributes of the XML element DataConnection:

• DataConnectionName: Enter a unique name for the data connection. This name is used to
identify the data connection in the configuration of the ADIF scheme.

• FetchType: Enter the type of data source used to retrieve data via the connection. Allowed
values are:

• Table: To read data from a ServiceNow database table.

• DatabaseView: To read data from a ServiceNow database view.

• Report: To read data from a ServiceNow report.

• UseJson: The RESTful services API of ServiceNow can provide all data in comma separated
format. In addition, the RESTful services API V1 of ServiceNow can provide data from tables in
JSON format and the RESTful services API V2 of ServiceNow can provide data from tables and
database views in JSON format. Set this XML attribute to true if ServiceNow data shall be
requested in JSON format and the XML attribute FetchType is set to a value supporting
JSON data in the ServiceNow RESTful services.

• Timeout: Define the HTTP request timeout for the data connection. If no timeout is defined,
the default timeout defined in the XML element DataConnectivityInfo is used.

• PageSize: Define the maximum number of records to be transmitted simultaneously on the
data connection. This attribute is not supported for import from reports and database views.

It is recommended that the XML attribute PageSize is set to a value lower than 500.
An excessively high number of records may lead to transmission problems.

• MaxRecordCount: Define the maximum number of records that shall be transmitted for a
request to ServiceNow for data import from reports. If the XML attribute PageSize is not set
or not supported, the value for the XML attribute MaxRecordCount should not exceed 10.000.
This attribute is not supported for import from database tables and database views.

• IncludeDisplayValue: Set the XML attribute IncludeDisplayValue to true if you want
to include the defined display value for integers in ServiceNow, like for example for the
priority of change requests, in addition to the integer. The display value as string is written
into a separate column of the temporary table created for data import. The integer value and
the display value will be imported into two different columns of the temporary table with the
extensions "_IV" (integer value) and "_DV" (display value) to the column name. If this XML
attribute is not set or set to false, only the integer value will be imported.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 102

• Prefix: Data import is triggered by an ADIF import scheme that is created semi-
automatically via an assistant. The assistant generates the names of temporary tables and
columns of temporary tables from the string defined in this attribute followed by the column
names imported from ServiceNow. It is recommended to set the XML attribute Prefix to
make sure that the column name is not identical with a reserved SQL keyword (for example:
Order).

10) For each XML element DataConnection, define the source from which the data shall be imported
by adding an XML element Entry as child XML element of the XML element DataConnection. An
XML element DataConnection can have multiple child XML elements Entry. Each XML element
Entry corresponds to one ADIF Entry in the ADIF import scheme configured to integrate the data
into the Alfabet database. Define the data source with the following XML attributes of the XML
element Entry:

• Name: Enter the ServiceNow sys_id of the report or the name of the database table/database
view that is the source of the data import in ServiceNow.

To retrieve the sys_id of a report, you can use the Copy sys_id command in the
context menu available for the entries of list view records in ServiceNow.

• Id: Enter a name that shall be used in Alfabet in the ADIF import scheme configuration.

11) Add an XML element DataTypeMappings to the root XML element ServiceNowConfig. Add the
XML attribute UnknownServiceNowTypeAsString. Enter true to import all data types that are
not explicitly defined as data types in the child elements of the XML element as string. If you enter
false and an imported data type is missing in the specification, import will fail.

12) For each data type that should not be imported as string, add an XML element DataType as child
element to the XML element DataTypeMappings and set the following XML attributes for the XML
element DataType:

• ServiceNowType: Enter the ServiceNow data type to be converted to a specific Alfabet data
type during import.

• ADIFType: Enter the Alfabet specific data type that shall be used to write the data to the
temporary tables created during import via the ADIF import scheme.

13) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring Integration of ServiceNow Data into the Alfabet Database

Data import from ServiceNow is performed by running an ADIF import scheme. In ADIF, schemes can be
configured using a ServiceNow assistant. When you open the assistant, a connection to the ServiceNow
instance that you want to define data for is opened and you can see which data is available for import in
the database table, database view or report. You can select the data in the assistant and when closing the
assistant, the ADIF scheme is automatically filled with the required entries to read the data into temporary
database tables. To define integration of the data into the Alfabet database, the entries resulting from the
semi-automatic creation of the ADIF import scheme elements must be amended with the information
about how data from the temporary tables in integrated into the Alfabet database. The configuration re-
quired for this last step of the import highly depends on your demands.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 103

This section only describes the handling of the ServiceNow assistant. Information about how to
configure an ADIF import scheme to write data from the temporary database tables to the
Alfabet database is given in detail in the reference manual Alfabet Data Integration Framework
and is not repeated here.

Using the ServiceNow assistant does not only provide semi-automatic configuration of the ADIF import
scheme. It also establishes the mechanisms required to open the connection to ServiceNow and import the
data when the ADIF import on basis of the ADIF import scheme is executed.

Within the ADIF import scheme, an XML element DataConnection in the XML object ServiceNowIm-
portConfig corresponds to an ADIF import entry if the import is performed for reports in CSV format or in
an ADIF import set if the import is performed from database tables or database views and therefore XML is
used as data transmission format. Each ADIF entry can be deactivated or activated individually. Therefore
you can limit data import via ADIF to subsets of the data configured in the XML object ServiceNowIm-
portConfig without changing the XML object configuration.

After having defined a valid configuration for data import in the XML object ServiceNowImportConfig,
you must define a new ADIF import scheme to configure data integration using the ServiceNow import as-
sistant:

1) In the ADIF tab in Alfabet Expand, right-click the ADIF Schemes root node in the explorer and
select Create Import Scheme. The new import scheme is added to the explorer. The attribute
window of the new import scheme is displayed on the right.

2) In the attribute window, set the following attributes for the ADIF import scheme:

• Name: Enter a unique name. The name is used to identify the ADIF import scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Assistant: Select ServiceNowImport_Assistant from the drop-down list.

• Import File Required : Select False.

• Commit After Run : If set to True, the result of the data import is written persistently to the
Alfabet database. If set to False, the import process will be rolled back after execution and no
changes will be written to the database. Configuration of the automatic start of workflows
during import is ignored when Commit After Run is set to False. It is recommended that you
set Commit After Run to False for a new import scheme to allow debugging without the risk
of corrupting the database. After the successful testing of the data import and verification
that the resulting changes to the Alfabet database are as expected, you can reset the
Commit After Run attribute to True to perform regular data import.

Please note the following:

• Setting the Commit After Run attribute rolls back all changes to data
records in existing tables caused by DML statements. The creation or deletion
of tables is not included in the roll back. For example, if you test an ADIF
scheme that is configured to persistently write temporary tables to the
database, these temporary tables will be created persistently even if Commit

After Run is set to False. SQL commands of the type OnActivate are also

excluded from roll back.

• When new objects are created during an ADIF import job, the data bind
mechanism assigns REFSTR values for the new objects. When Commit After
Run is set to False, the objects are not created in the database, but
nevertheless the REFSTR values are regarded as in use and will not be used

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 104

for data bind in the next ADIF run unless the Alfabet Server or Alfabet Expand
application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the

option Commit After Run is set to False for the import scheme.

• Drop Temp Tables : If set to True, all temporary tables are dropped after import. Only the
changes to the Alfabet database are stored persistently. If set to False, the temporary tables
are kept in the database after import is finished. Storing temporary tables persistently is only
required for special import/export cycles designed for data manipulation that require input
from the temporary tables of a previously set import. In most cases, setting this attribute to
True is recommended to clean the database of data that is not part of the Alfabet meta-
model.

3) In the explorer, right-click the node of the new ADIF import scheme and select Create ADIF
Scheme Details Using the ServiceNow Import Assistant. The assistant opens in your standard
Web browser.

4) In the field (1) Create ADIF Entries for Data Connection Entries, all XML elements Entry defined
for all DataConnection XML elements included in your ServiceNowImportConfig XML object
will be displayed. For each XML element Entry, the name of the Entry followed by the name of
the DataConnection in parentheses is displayed. Click on each data connection for which data
shall be integrated with this ADIF import scheme.

5) After having selected all relevant Entry XML elements, click the button Create Entries below the
field to trigger automatic creation of the ADIF entries / ADIF import sets in your ADIF import
scheme. After the action is completed, you will see the message Create Entries completed in the
lower left corner of the assistant window.

6) Select one of the Entry XML elements for which you want to edit the ADIF configuration in the
drop-down list of the field (2) Select an Entry to Edit. A number of new fields are displayed.

7) Optionally, you can define the import to include only data from a subset of the columns in a
database table, database view or report. By default, Select all columns to import is selected in
the field (3) Select ServiceNow Columns to Import. If you would like to exclude data from single
columns from import, you can select Select columns manually to import instead.

Exclusion of columns from import can be used if the data volume for import becomes too
high. There is a restriction though that shall be taken into account: when manually defin-
ing which columns to import, the request sent to ServiceNow to import the data must in-
clude all defined column names instead of requesting all data from a specified table. De-
pending on the length of the column name, the size restriction for API calls could be ex-
ceeded.

8) The field (4) Edit Selected Entry contains a table listing all data that might be imported. For each
column in a database table, database view or report a row is displayed in the table. The first column
Column Name displays the name of the database column, database view column or column header
in the report. If applicable, change the default import from ServiceNow by editing the data in the
table:

• Include: By default ADIF import entries / ADIF import sets are defined for all data available in
a ServiceNow database table, database view or report. You can exclude data from import by
clearing the checkbox in the respective table row. The respective ADIF import entry / ADIF
import set will be removed from the ADIF import scheme. It will also be removed from this
table, because it does not list the Entry XML elements of the XML object

ServiceNowImportConfig but the available ADIF import entry configuration in the ADIF

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 105

import scheme. This column is only editable if the field (3) Select ServiceNow Columns is set
to Select columns manually to import.

• Type: Check whether the data type for integration of the data into the object class database
tables of the Alfabet database is correct. It should be identical with the data type of the object
class property the data will be stored in. Redefine the definition when necessary.

• Size : If String is selected in the Type field, check whether the defined string length
displayed in this column matches the size specification of the target object class property in
the Alfabet database. For technical reasons, the Size value must be set to <size in the target
database table>+1. For example, if you want to import a value with a permissible size of 16,
you must define the Size attribute as 17.

9) Optionally, you can configure the import to be limited to objects that have been changed since the
last data import with the same ADIF import scheme. The drop-down list of the field (5) Select
Netchange ServiceNow Columns lists all columns for the entry that return dates. Select one or
multiple columns to perform net change import on basis of these dates. The dates in the selected
columns are compared to the data of the last ADIF import and the data is only imported if one of
the dates lies after the date of the last ADIF import. Net change import is performed on the level of
dates. Import time is not relevant for the comparison.

If you set the Type of the property to Date in the field (4) Edit Selected Entry, you will
only see the property in the drop-down list of the filed (5) Select Netchange Service-
Now Columns after having clicked the button Update Entries.

10) Click the button Update Entries to apply your changes to the ADIF import entries/ ADIF import
sets in the ADIF import scheme. After the action is completed, you will see a message informing
you that the update has been completed. The message is displayed in the lower left corner of the
assistant window.

11) Repeat step 6) - 11) for all data connection entries.

12) In the field (6) Select to activate/deactivate Data Connection, you can optionally deactivate
execution of single ADIF import entries/ADIF import sets in your ADIF import scheme. By default,
all ADIF elements are activated and are displayed with a checkmark in the list. Activation or
deactivation is done by clicking a name in the drop-down list to change the checkmark setting.

13) Click OK to write the changes into the ADIF import scheme.

14) Close the browser window to close the assistant and return to the ADIF tab of Alfabet Expand.

15) Right-click the ADIF import scheme and select Rescan Tree in the context menu. You will then see
all automatically generated ADIF elements in the ADIF scheme. Each ADIF import entry will have
data import to temporary tables defined via the attribute elements in the Attributes folder. The
import to the standard Alfabet database tables is not included into the configuration.

The assistant generates the names of temporary tables and columns of temporary ta-
bles from the string defined in the attribute Prefix of the DataConnection XML ele-
ment in your ServiceNowImportConfig XML object followed by the column names im-
ported from ServiceNow. Names are truncated after 30 characters.

16) Configure the data integration to the standard Alfabet database tables according to your demands.
For information about the configuration options available via ADIF import schemes see the
reference manual Alfabet Data Integration Framework.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 106

Changing an Existing Configuration for ServiceNow Integration

During execution of ADIF data import from ServiceNow, the configuration in the XML object Service-
NowImportConfig is used to establish the connection and find the data to be imported. Changes in the
XML object that are having an effect on the way data is imported require that the ADIF scheme is changed
to reflect the changes. For example, when importing integer values with display values, two database col-
umns are required in the temporary tables created during ADIF import to store the data. When creating the
ADIF scheme via the ServiceNow assistant this is taken into account. If you later change the import options
to import integer values only, the temporary database table still has the columns with "_IV" and "_DV"
amended for import of both integer and display value while the import mechanism is trying to write the
data into a database column without the suffixes.

It is therefore required to adapt the ADIF scheme to changes made to the configuration in the XML object
ServiceNowImportConfig. This must be performed via the ServiceNow assistant to make sure that the
import mechanism is correctly adapted to the changes.

Changes in the ServiceNow data are displayed in the ServiceNow import assistant. To check whether your
configuration is still in accordance with Service Now data, select the Entry XML element in the drop-down
list of the field (2) Select an Entry to Edit and check the icons that are displayed in the field (3) Edit Se-
lected Entry:

• : Nothing has changed for this data.

• : The data is no longer available in ServiceNow.

• : The data has been added in ServiceNow.

If you click into the mapping table, a floating toolbar is displayed that provides access to a legend
explaining the icons.

Updates can be performed per Entry XML element in a DataConnection XML element in the XML object
ServiceNowImportConfig. You can do one of the following:

• To add a new ADIF import set / ADIF import entry for a new Entry XML element without changing
the rest of the configuration, select the new Entry only in the field (1) Create ADIF Entries for
Data Connection Entries, click the button Create Entries and click OK to apply your changes to
the ADIF scheme. The ADIF import set or ADIF import entry will be created without changes to the
existing import configuration for other Entry XML elements.

• To update an existing ADIF import set / ADIF import entry with new columns for a changed Entry
XML element without changing the rest of the configuration, select the Entry XML element in the
drop-down list of the field (2) Select an Entry to Edit, edit the data in the field (3) Edit Selected
Entry according to demands, click the button Update Entries and click OK to apply your changes to
the ADIF scheme.

Please note that the ADIF import set / ADIF import entry is completely overwritten by this action. Any con-
figuration performed manually in the ADIF scheme is removed.

• To edit an existing ADIF entry configuration for an existing and unchanged Entry XML element,
select the Entry XML element in the drop-down list of the field (2) Select an Entry to Edit, edit the
data in the field (3) Edit Selected Entry, click the button Update Entries and click OK to apply your
changes to the ADIF scheme. The changes will be selectively applied without changing any other
configurations.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 107

• To delete an ADIF import set / ADIF import entry because the corresponding Entry XML element has
been removed, you must manually remove ADIF import set / ADIF import entry from the ADIF
scheme in the ADIF Schemes explorer in the ADIF tab from Alfabet Expand. This action is not
supported by the ServiceNow assistant.

Please note that any changes are only applied after clicking the button OK of the assistant. The changes
are not automatically visible in the ADIF Schemes explorer in Alfabet Expand. Right-click the ADIF import
scheme that you have edited via the ServiceNow assistant and select Rescan Tree to make the changes
visible in the ADIF import scheme.

Configuring Integration of Alfabet Data Into ServiceNow

If you are using ServiceNow, you can import data about the services planned and approved in Alfabet from
the Alfabet database into ServiceNow to re-use the data for management of hosted services. There is no
predefined way to export the data. Which Alfabet and ServiceNow data is involved is completely customer
configured.

The data from various tables from the Alfabet database is first gathered into a configured report represent-
ing a single tabular dataset. The data from this configured report must match an Import Set Table defined
at ServiceNow. During export, the data from the Alfabet configured report is written into the corresponding
columns of the Import Set Table at ServiceNow. It is then imported into ServiceNow database tables by a
customer configured transformation process.

 FIGURE: Overview over the data collection from Alfabet to ServiceNow

The following configuration steps are required to export data from the Alfabet database to ServiceNow:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 108

• In Alfabet, a configured report of the Type Query or NativeSQL must be defined that gathers the
data from the database tables of the Alfabet database into a simple dataset for export to
ServiceNow. Filters can be defined for the report that can be filled with values during export via the
command line of the ADIF export scheme that triggers data export. The attribute Category of the
configured report must be set to a string that is then defined in the XML object

ServiceNowExportConfig for the data connection exporting the data from the report.

• In Alfabet, the connection to ServiceNow and the mapping of data types must be defined in the XML

object ServiceNowExportConfig.

• In Alfabet, an ADIF export scheme must be created with the Assistant attribute set to
ServiceNowExport_Assistant. The definition of the export scheme is completely performed via
the assistant and does not require manual adaptations. Mapping of data from the result dataset of
the configured report to the columns of the staging table of the ServiceNow export is performed in
the assistant. A net change export can also be configured.

• In ServiceNow, a service must be created with the import method HTTP and with an Import Set Table
that will be filled during import with the data from Alfabet. For information about this configuration
step please refer to the documentation of ServiceNow. The import from the Import Set Table to the
tables of ServiceNow must be configured in ServiceNow via a Transform Map. Please note that
changes to data tables in ServiceNow can invoke business rules which might lead to performance
issues or errors during imports. The amount of data to import per request should be carefully
considered to avoid such problems. For information about this configuration step please refer to the
documentation of ServiceNow.

• In ServiceNow, the plugin insertMultiple must be activated, because it activates the SOAP method
used for data import in service now.

To execute data export from Alfabet to ServiceNow, you must start the ADIF export triggered by the ADIF
export scheme. The ADIF export executes both data retrieval from the configured report and data trans-
mission to the ServiceNow service. The ADIF export should be executed in regular intervals to ensure data
consistency between ServiceNow and Alfabet.

Information about the execution of ADIF schemes is provided in the reference manual Alfabet
Data Integration Framework.

The following sections describe the configuration steps for the ServiceNow interface on Alfabet side in the
required order of execution:

• Defining Data to Export from the Alfabet database Via a Configured Report

• Configuring Data Transmission from Alfabet to ServiceNow

• Configuring the ADIF Export Scheme for Data Export to ServiceNow

• Changing an Existing Configuration for ServiceNow Integration

Defining Data to Export from the Alfabet database Via a Configured Report

All data that shall be exported must be collected in a configured report that is based on an Alfabet query or
a native SQL query and returns a simple tabular dataset.

The configured report is created in the configuration tool Alfabet Expand:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 109

1) In the Reports tab of Alfabet Expand, right-click the Reports folder or a sub-folder thereof and
select Create New Report. You will see the new configured report listed below the selected report
folder.

2) In the property window, define the following attributes for the configured report:

• Name: Optionally, change the technical name of the configured report. The technical name of
the configured report must be unique.

The technical name is used for identification of the configured report in the context
of technical processes such as merging the report configuration with a report con-
figuration saved as an XML file. Therefore, the following is required when defining
the name of a configured report:

• The name must be unique. The name must be unique regardless of the report
folder it is structured in.

• The name may not be changed once a configured report has been created.

• A validation mechanism checks for correct syntax when defining a technical
name. Please note that names may not begin with an empty space nor
include special characters. For a list of the special characters that are not
allowed, see the section Defining Attributes for Configuration Objects in the
chapter Getting Started with Alfabet Expand.

• If the technical name of the configured report is changed, the name will be
correctly updated in other configuration objects referencing the changed
report during design time.

Please note that the name of a changed configuration object will not be updated in
guide pages or guide views. If you plan to change the name of a configuration ob-
ject, the reference in the navigation page should be changed prior to changing the
configuration object name. You can use the Show Usage functionality in the con-
text menu of the configured report to evaluate whether the configured report has
been added to a guide view or guide page.

• Caption: Enter a caption for the configured report. The caption you define here will be
displayed in the Reports Administration functionality in the Administration module and the
Configured Reports views of the Alfabet interface. If the configured report is assigned to an
object view as a page view, the text will be displayed as the page view caption in the object
view. The caption of the configured report may exceed the conventional 64 character limit.

• Type : Select Query to define a report based on an Alfabet query or NativeSQL to define a
report based on a native SQL query.

• Category: Enter a unique string that will be used to identify the report in the data connection
definition when configuring the data transmission to ServiceNow. You can define multiple
reports having the same Category setting. If you configure an ADIF Export scheme for data
export on the data connection referring to the report category, you can select the configured
report to be used for the export from all configured reports having the defined Category
setting.

The Category strings must be completely different from each other, because for
technical reasons, the drop-down list for the reports in the ADIF Export scheme as-
sistant is not only finding exact matches of the string defined in the data connection
configuration, but also reports with Category settings containing the defined string.
For example if the data connection is configured to work with configured reports of

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 110

the Category ExportApplications, configured reports with a category like Ex-
portApplicationGroups are also found.

• Alfabet Query / Native SQL Query: Click the Browse button to open the Alfabet Query
Builder or the text editor for definition of a native SQL query. Define a query which returns
the information to be transmitted to the ServiceNow service in a simple tabular dataset. Note
the following for the configuration of the query:

• Filter parameters can be defined in the query for the configured report. The
parameters will lead to the generation of parameter elements in the ADIF scheme. The
values for the parameters are set via the command line when executing the ADIF
export.

For a description of how to define a query with filter parameters, see Defining a
WHERE Clause that Causes the Generation of a Filter Field in the Report in the
section Defining Filters for Configured Reports and Selectors in the reference
manual Configuring Alfabet with Alfabet Expand.

For a description of the setting of parameter values of ADIF export schemes,
see Configuring Import Dependent on Parameters in the reference manual
Alfabet Data Integration Framework.

• If you want to define net change import, the data set shall include at least one column
that returns a date that can be used to perform net change data export by exporting
only data that has a date after the last identical export was executed.

• If indicators and roles are added to an Alfabet query via Show Properties of the type
RoleType or Indicator, they are processed as string. Settings for Show Indicator As
Icon are ignored.

• Apply to Class: Optionally define an object class. If the attribute Apply to Class is set, the
Alfabet query for the configured report must include a WHERE clause using the Alfabet
parameter BASE to refer to the current object. The parameter BASE must then be filled with
the REFSTR of an object of the selected class via the command line of the ADIF job executing
the configured report.

For information about Alfabet parameters, see Referring to the Current Alfabet Con-
text in a WHERE Condition and Using Parameters in native SQL in the chapter Defin-
ing Queries in the reference manual Configuring Alfabet with Alfabet Expand.

3) In the toolbar, click the Save button to save your changes.

4) In the explorer, right-click the configured report and select Review Report. The configured report
opens in a web browser. If the results are not as expected, you can edit the query until the output
of the configured report meets your expectations.

5) Right-click the configured report in the explorer and select Set State to Active from the context
menu.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 111

Configuring Data Transmission from Alfabet to ServiceNow

Configuration of data export is done in the XML object ServiceNowExportConfig. The XML object al-

lows connections to multiple ServiceNow sources to be defined. The general structure of the XML in the
XML object is the following:

<ServiceNowConfig>

<DataTransferMappings>

<DataTransferMapping>

<ServiceAccessInfo>...</ServiceAccessInfo>

<DataConnectivityInfo>...</DataConnectivityInfo>

</DataTransferMapping>

</DataTransferMappings>

<DataTypeMappings>...</DataTypeMappings>

The root XML element ServiceNowConfig of the XML objects contains two child elements:

• DataTransferMappings: This XML element can contain one or more child elements
DataTransferMapping, each containing the definition of a connection to a different ServiceNow
server. The definition includes the specification of the connection to the REST API of the web
services of the ServiceNow server in a child element ServiceAccessInfo and the specification of
data to be transferred in a child element DataConnectivityInfo. Within the
DataConnectivityInfo element, different data transfer conditions can be defined for different
data types.

• DataTypeMappings: This XML element contains the mapping of data types that are exported to
data types that are valid in ServiceNow. The data is converted to the specified data types during
data import. The data type definitions are valid for all data connections on all data transfer
mappings.

To define the data import from a ServiceNow server:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click ServiceNowExportConfig and select Edit XML.... The XML object opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML attribute XML Template of the XML object. The template can be copied to
the XML object to avoid having to write the configuration manually. The following de-
scription describes a configuration from scratch. With a sample configuration, you have
to edit rather than add the XML elements described in the following.

3) Add a child XML element DataTransferMappings to the root XML element ServiceNowConfig.

4) Add a child XML element DataTransferMapping to the XML element DataTransferMappings
and define the following XML attribute for the XML element DataTransferMapping:

• Name: The name of the ServiceNow server connection that is used to identify the connection
in the ADIF scheme configuration.

• IsActive: Set to true if data should be exported to the ServiceNow instance. Set to false if
data should currently not be exported to the ServiceNow instance.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 112

5) Add a child XML element ServiceAccessInfo to the XML element DataTransferMapping to
define the information required to establish a connection to the ServiceNow server.

6) Add an XML attribute AutomaticSwitchToBasic to the XML element ServiceAccessInfo and
set it to true to connect via basic authentication if OAuth authentication fails.

7) The information required to establish the connection to the REST API of the web services of the
ServiceNow server must be added as strings to the following child XML elements, which have to be
added to the XML element ServiceAccessInfo:

• service: The URL of the ServiceNow instance.

• apipath: The path to the REST API at the ServiceNow instance. Enter /api/now/v1/.

• oauthpath: OAuth is required for authentication. Specify the path to the OAuth endpoint
with the XML element oauthpath.

• username: The user name for access to ServiceNow.

The user must have the required access permissions to perform the following REST
api service calls to ServiceNow:

• https://<BaseAddress>/oauth_token.do

• https://<BaseAddress>/<databaseviewname>.do?WSDL

• https://<BaseAddress>/api/now/v1/table/sys_dictionary?sysparm_query=G
OTOname=<tableName>

• https://<BaseAddress>/api/now/v1/table/sys_transform_map?source_table
=<tableName>

• https://<BaseAddress>/api/now/v1/table/sys_transform_entry?map=<mapid
>

• https://<BaseAddress>/api/now/v1/table/sys_db_object?name=<tableName
>

For example, the following permissions would allow to execute all required service
calls:

• import_admin to perform the required changes to import set tables.

• soap to perform SOAP operations

• personalize_dictionary for access to sys_dictionary and
sys_db_object tables that is required during import into ServiceNow to get
additional details for each table and the definition for every column on each
table.

• Rest_service for access rights to required database tables via REST API
calls.

• itil, if CMDB CI tables re used in ServiceNow import.

• password: The password for access to ServiceNow.

• client_id: Enter the Client ID for the OAuth endpoint at ServiceNow.

• client_secret:Enter the Client Secret for the OAuth endpoint at ServiceNow.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 113

In the XML elements for the definition of the ServiceNow server connection server varia-
bles can be used to read the value of the XML element at runtime from the server alias
configuration of the Alfabet Web Application when a connection to ServiceNow is estab-
lished. For information about server variables, see Configuring Server Variables for Inte-
gration and Interoperability Solutions.

8) Add a child XML element DataConnectivityInfo to the XML element DataTransferMapping to
define the information required to transfer data the ServiceNow server. The XML element
DataConnectivityInfo. Define the default data transmission parameters for the data exports by
setting the following XML attributes of the XML element DataConnectivityInfo:

• DefaultPageSize: You can define a limit for data to be transmitted simultaneously on the
data connection. Enter the number of records that shall be transmitted simultaneously. This
value will be valid for all data connections that do not have an attribute PageSize defined. If
it is neither defined for the data connection nor with this XML attribute, a default of 100 will
be set.

• DefaultTimeout: Define the default HTTP request timeout that shall be used for all data
connection that do not include a timeout definition via the XML attribute Timeout of the
DataConnection XML element. If a timeout is neither defined for the data connection nor
with this XML attribute, the default value defined for the Alfabet Web Application is set.

• DefaultMaxThreadCount: Define the maximum number of parallel threads for data
transmission to ServiceNow on a data connection. The value defined here is used as default
for all data connections that do not have a maximum number of records to be transmitted
defined via the XML attribute MaxRecordCount of the DataConnection XML element.

9) Add one or multiple child elements DataConnection to the DataConnectivityInfo XML
element. Each XML element DataConnection bundle data to be exported via one transmission to
the ServiceNow server. Each XML element DataConnection corresponds to one service of
ServiceNow for data import. That means that all information to be exported for an XML element
DataConnection must have the same export format and data structure. Define the data
transmission parameters for the data request by setting the following XML attributes of the XML
element DataConnection:

• DataConnectionName: Enter a unique name for the data connection. This name is used to
identify the data connection in the configuration of the ADIF scheme.

• ReportCategory: Enter the string that is defined in the attribute Category of the configured
report used for data export via that connection.

• Timeout: Define the HTTP request timeout for the data connection. If no timeout is defined,
the default timeout defined in the XML element DataConnectivityInfo is used.

• PageSize: Define the maximum number of records to be transmitted simultaneously on the
data connection.

It is recommended that the XML attribute PageSize is set to a value lower than 500.
An excessively high number of records may lead to transmission problems.

• MaxthreadCount: Define the maximum number of parallel threads for data transmission to
ServiceNow.

10) For each XML element DataConnection, define the source from that the data shall be exported by
adding an XML element Entry as child XML element of the XML element DataConnection. An
XML element DataConnection can have multiple child XML elements DataConnectionEntry.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 114

Please note that the data structure exported via the defined sources must be consistent within
one XML element DataConnection. Define the data source with the following XML attributes of
the XML element Entry:

• Name: Enter a unique name to identify the entry in the ADIF Export scheme configuration.

• Id: Enter the identifier of the ServiceNow service that is the target of the export.

11) Add an XML element DataTypeMappings to the root XML element ServiceNowConfig. Add the
XML attribute UnknownServiceNowTypeAsString. Enter true to export all data types that are
not explicitly defined as data types in the child elements of the XML element as string. If you enter
false and an exported data type is missing in the specification, export will fail.

12) For each data type that should not be exported as string, add an XML element DataType as child
element to the XML element DataTypeMappings and set the following XML attributes for the XML
element DataType:

• ServiceNowType: Enter the ServiceNow data type that will be transmitted to ServiceNow.

• ADIFType: Enter the Alfabet specific data type that is converted to the ServiceNow data type
defined with the XML attribute ServiceNowType.

13) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring the ADIF Export Scheme for Data Export to ServiceNow

Data export to ServiceNow is performed by running an ADIF export scheme. In ADIF, export schemes can be
configured using a ServiceNow assistant. When you open the assistant, a connection to the ServiceNow
instance that you want to export data to is opened and you can directly perform data mapping. You can se-
lect the data in the assistant and when closing the assistant, the ADIF scheme is automatically filled with
the required entries to export the data.

Using the ServiceNow assistant does not only provide automatic configuration of the ADIF export scheme.
It also establishes the mechanisms required to open the connection to ServiceNow, execute the configured
Alfabet report and export the data when the ADIF export on basis of the ADIF export scheme is executed.

Within the ADIF export scheme, an XML element Entry in an XML element DataConnection in the XML

object ServiceNowImportConfig corresponds to an ADIF export entry. Each ADIF entry can be deac-
tivated or activated individually. Therefore, you can limit data export via ADIF to subsets of the data config-
ured in the XML object ServiceNowImporExportConfig without changing the XML object configuration.

After having defined a valid configuration for data export in the XML object ServiceNowExportConfig,
you must define a new ADIF export scheme to configure data integration using the ServiceNow import as-
sistant:

1) In the ADIF tab in Alfabet Expand, right-click the ADIF Schemes root node in the explorer and
select Create Export Scheme. The new ADIF export scheme is added to the explorer. The
attribute window of the new ADIF export scheme is displayed on the right.

2) In the attribute window, set the following attributes for the ADIF Export scheme:

• Name: Enter a unique name. The name is used to identify the ADIF export scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Assistant: Select ServiceNowExport_Assistant from the drop-down list.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 115

• Commit After Run: If set to True, the result of the data export is written persistently to the
external files or the external target database. If set to False, the export process is rolled back
after execution and no changes are written to the external database or files. It is
recommended to set Commit After Run to False for a new export scheme for export to an
external database to allow debugging without the risk to corrupt the external database. After
successful testing of the data export and verification that the resulting changes to the
external database are as expected, Commit After Run can be set to True to perform regular
data export.

The following restrictions apply to setting Commit After Run to False:

• Commit After Run only affects database transactions. If you export data to a
file, the export file is created, and data is added to the file also if Commit
After Run is set to False.

• Setting Commit After Run to False rolls back all changes cause by DML
statements (changes to data records in existing tables). Creating or deleting
tables is not included in the roll back. That means, for example, if you test an
ADIF scheme that is configured to write temporary tables to the database
persistently, these temporary tables will be created persistently even if
Commit After Run is set to False. SQL Commands of the type OnActivate
are also excluded from roll back.

3) In the explorer, right-click the node of the new ADIF export scheme and select Create ADIF
Scheme Details Using the Service Now Import Assistant.

4) Confirm the warning. The assistant opens in your standard Web browser.

5) In the field (1) Select a Data Connection, select a data connection configured in the XML object

ServiceNowExportConfig from the drop-down list. The Entry elements for the

DataConnection element are listed in the field (2) DataConnection Entries. After each Entry
element, the information (Entry not created) is displayed, because the entries are not yet included
into the ADIF export scheme.

6) In the field (3) Select an Entry to Edit/Update, select one of the available entries to create an
ADIF export entry for it.

7) In the field (4) Map Alfabet Report with Selected Entry, select one of the configured reports that
are mapped to the data connection via their Category setting, to be executed for export via this

Entry.

8) Optionally, you can define in the field (5) Select Display Option for Alfabet Report Properties.
Select one of the following:

• Sort Report Columns as Defined in Report: The column names in the configured report are
displayed instead of the object class property names. The sort order is identical to the order of
columns in the configured report.

• Sort Report Columns with Lexicographic Sorting: The column names in the configured
report are displayed instead of the object class property names. The sort order is
alphanumeric.

• Sort Property Columns as Defined in Report: The object class properties are displayed as
<ObjectClassName>.<PropertyName>. The sort order is identical to the order of columns in the
configured report.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 116

• Sort Property Columns with Lexicographic Sorting: The object class properties are
displayed as <ObjectClassName>.<PropertyName>. The sort order is alphanumeric.

9) Optionally, you can configure the export to be limited to objects that have been changed since the
last data export with the same ADIF export scheme and the same command line parameters. The
drop-down list of the field (6) Select Netchange Report Parameter lists all columns of the
selected report that return dates. Select one or multiple columns to perform net change export on
basis of these dates. The dates in the selected column are compared to the date of the last ADIF
export execution and the data is only exported if the date lies after the date of the last ADIF export.
Net change export is performed on the level of dates. Export time is not relevant for the
comparison.

10) Click the button Create Attributes. After the action is completed, you will see a message
informing you that the attribute creation has been completed in the lower left corner of the
assistant window and a table is displayed in the field (7) Map Alfabet Class Properties to
ServiceNow Web Service Fields.

11) In the table of the field (7) Map Alfabet Class Properties to ServiceNow Web Service Fields all
fields from the ServiceNow Import Set Table are listed in the column ServiceNow Web Service Field.
For each row, select the matching column of the Alfabet configured report from the drop-down
list. The additional columns of the table inform you about the target data in the standard
ServiceNow table to that the data is imported. The ServiceNow property name and type is given as
well as information about important characteristics:

• *C = The property is the unique key to map the data to the ServiceNow data during import.

• *R = The property is set as display value in ServiceNow, which means that the value is
displayed in the user interface of ServiceNow if the record is referenced.

12) Click Create Entry.

13) Repeat step 6) - 11) for all data connection entries.

14) Click OK to write the changes into the ADIF import scheme.

15) Close the browser window to close the assistant and return to Alfabet Expand.

16) In the menu of Alfabet Expand, select Meta-Model > Re-Read Meta-Model. The ADIF scheme is
updated with the settings performed in the assistant. the ADIF export entries that were created on
basis of the settings will have data export defined via the attribute elements in the Attributes
folder.

Changing an Existing Configuration for ServiceNow Integration

You can change an existing configuration, for example by altering the export report to integrate different
data or to integrate new properties that have been added at the ServiceNow side. Changes to the configu-
ration always require a change in the ADIF export scheme via the ServiceNow Export Assistant.

If you start the ServiceNow Export Assistant of an existing ADIF scheme already configured to export
data to ServiceNow, and select a changed data connection entry for update, the export assistant compares
the current configuration in Alfabet and ServiceNow with the existing configuration in the ADIF scheme. In
the field for mapping of properties of the ServiceNow Export Assistant, the changes are marked with
icons to help you finding your changes in short time. The icons provide the following information:

• : the configuration has not changed for this mapping.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 117

• : the property has been added.

• : the property has been removed.

• : the property has been changed in ServiceNow.

• : the property has been changed in Alfabet.

If you click into the mapping table, a floating toolbar is displayed that provides access to a legend
explaining the icons.

You can do one of the following:

• To apply changes in the property mapping of an existing entry, change the settings in the window
(7) Map Alfabet Class Properties to Service New Web Service Fields and click Update Entry.

• To base the import on a completely new report, change the exiting setting in the field (4) Map
Alfabet Report with Selected Entry. Alter the properties in the window (7) Map Alfabet Class
Properties to Service New Web Service Fields and click Create Entry.

Sending Requests to ServiceNow via a Proxy Server

Optionally, you can configure the ServiceNow integration interface to send requests to a ServiceNow in-

stance via a proxy server. This requires the following additional configuration in the XML objects Service-
NowExportConfig and ServiceNowImportConfig for the data export and data import configurations

described above:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click the node ServiceNowExportConfig or ServiceNowImportConfig respectively

and select Edit XML.... The XML object opens.

3) Add a child XML element Proxy to the XML element ServiceAccessInfo of the XML element
DataTransferMappings for which you want to define data transmission via a proxy.

4) Define the following XML attributes for the XML element Proxy:

• url: Define the URL of the proxy server.

• user: If required, enter the username for access to the proxy server. The domain name for
authentication is defined separately with the XML attribute domain and must not be specified
as part of the username.

• password: If required, enter the password for access to the proxy server.

• domain: If required, define the domain name that shall be used as part of the username for
authentication at the proxy server.

5) In the toolbar of Alfabet Expand, click the Save button to save your changes.

If you have configured multiple data connections and each data connection shall use a different proxy, you
can add additional proxies to your proxy configuration and refer to one of the proxies in the data

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 118

connection configuration. The proxy definition above will be used as default if no proxy is assigned to a
data connection. The use of an additional proxy requires the following configuration:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click ServiceNowExportConfig and select Edit XML.... The XML object with the Amazon

Web Services data import definition opens.

3) Add a child XML element AdditionalProxies to the XML element Proxy.

4) For each additional proxy you want to define, add a child XML element AdditionalProxy to the
XML element AdditionalProxies and define the following XML attributes for the XML element
AdditionalProxy:

• Name: Define a unique name for the additional proxy. This name is used to refer to the proxy in
the data connection configuration.

• url: Define the URL of the proxy server.

• user: If required, enter the username for access to the proxy server. The domain name for
authentication is defined separately with the XML attribute domain and must not be specified
as part of the username.

• password: If required, enter the password for access to the proxy server.

• domain: If required, define the domain name that shall be used as part of the username for
authentication at the proxy server.

5) Add an XML attribute Proxy to each DataConnection XML element that shall use one of the

additional proxies. The value of the XML attribute Proxy must be identical to the value of the Name

XML attribute of the XML element AdditionalProxy.

6) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Sending Requests to ServiceNow via an API Gateway

Requests to ServiceNow can optionally be send via an API gateway. The following configurations are re-
quired in addition to the configurations described above in the sections Configuring Integration of Data
from ServiceNow and Configuring Integration of Alfabet Data into ServiceNow:

• In the configuration of the ServiceNow integration in the XML objects ServiceNowImportConfig

and ServiceNowExportConfig, the XML element service has to be set to the URL of the API

gateway.

• The API gateway must be configured to route requests to ServiceNow. A list of resources that need
to be accessed at ServiceNow is available in the appendix.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 119

Chapter 13: Configuring Integration with Jira

Alfabet supports data import from Jira® to Alfabet as well as the export of Alfabet data to Jira. The capa-
bility to import Jira data to Alfabet allows the enterprise to import issues, projects, categories, and boards
documented in Jira to specified entities in Alfabet such as applications, deployments, standard platforms,
projects, etc., thus providing a bridge between agile decisions on the enterprise level with operational deci-
sions taken by SCRUM teams, project teams, etc.

The capability to export Alfabet data to Jira supports the planning and prioritization of operative develop-
ment work and provides support for bimodal IT and agile projects in the context of portfolio evaluation. The
goal of the Jira export is to create new issues in Jira based on issues that have been captured via demands,
features, issues, value nodes, etc. in Alfabet.

For details about the entities in Jira such as projects, issues, boards, and sprints as well as the
overall Jira product, please consult the documentation delivered with the Jira product.

The Jira content that can be integrated will depend on the Jira version used by your enterprise.

• For Jira versions prior to Jira 5, no integration is available as Jira 5 is the first version supporting the
REST API used to establish the integration.

• For Jira versions 5-7, only the Jira Server API is available. It can be used to fetch issues, projects,
and sprints assigned to issues.

• For Jira version 7, both the Jira Server API and the Jira Agile API are available. Therefore, in addition
to the issues and projects provided by the Jira Server API, the Jira Agile API ensures that scrum
boards and all sprints are fetched. Please note that there may be certain functionalities that may
only be available with various minor releases of Jira. If a fetch (for example, of a status category) is
unsuccessful, it will be written to the verbose ADIF log and the import will continue with the
remaining fetches.

OAuth is used by Jira for authentication. However, because the OAuth version implemented by
JIRA is OAuth 1.0a 3-Legged (3LO) and involves user interaction, the integration will use basic
authentication to authenticate the Jira Server API and the Jira Agile API.

The following image displays the meta-model used in Jira. You should familiarize yourself with this infor-
mation in order to configure integration with Jira and to map Jira objects with Alfabet objects.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 120

The following information is available:

• Importing Jira Data to Alfabet

• Configuring Connections to Import Jira Data to Alfabet

• Importing Jira Data to Alfabet via ADIF Schemes

• Exporting Alfabet Data to Jira

• Configuring Connections and Mapping to Export Data from Alfabet to Jira

• Configuring the Primary and Secondary Reports

• Configuring Object Filter Reports

• Configuring the ADIF Export Assistant to Export Alfabet Data to Jira

• Configuring the Event Templates to Trigger the ADIF Export Schemes for Synchronization

• Configuring Semantic Connections to Link and Synchronize Jira Projects with Alfabet Objects

• Creating a Jira Connection for Project-Based Integration

• Creating a Jira Connection for Architecture-Based Integration

• Linking to and Synchronizing the Jira Project

Importing Jira Data to Alfabet

Depending on your Jira® version, your enterprise may import Jira projects (including project categories
and project components, for example), issues, boards, and sprints and map them to relevant Alfabet object
classes. You can select different issue fields to be imported and optionally choose to import the data for
Sprints or Sprints & Boards. All other data such as Projects, Project Categories, etc. will be

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 121

imported per default with the issues. The Jira objects can be mapped to and to relevant Alfabet object clas-
ses and imported as applications, components, deployments, standard platforms, and projects, thus
providing a bridge between portfolio- and prioritization-related decisions at the enterprise level and the
operational decisions taken by SCRUM teams, project teams, etc.

For example, the IT department of a banking enterprise documents bugs and change requests
for their trading software in Jira and captures their operational plans in Alfabet. In this case, for
example, the Jira issues could be imported to Alfabet as features that are planned for applica-
tions that are owned and fiscally managed via ICT objects. The following mapping schema pro-
vides an example of how Jira projects could be mapped to an ICT object structure in Alfabet:

Jira Class Alfabet Class

ProjectCategory ICT Object Group

Project ICT Object

ProjectVersion Application

Issue Feature

 FIGURE: Overview of import from Jira

The following configuration is required to import data from Jira to Alfabet:

1) The connection to Jira must be configured in the XML object JIRAIntegrationConfig in Alfabet

Expand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 122

2) The data to be imported must be configured for an ADIF import scheme via the JIRA Import
Assistant. In the JIRA Import Assistant you configure which connection to use for the import as
well as the projects, issue types, and issue statuses, and standard and custom issue fields to
import. Upon execution of the import scheme, temporary tables will be created for Jira issues and
the relevant Jira issue attributes. Depending on the Jira version you are working with, projects,
springs, and boards may also be imported depending on the Jira version and configuration of the
JIRA Import Assistant.

3) Additional configuration of the import scheme is required to map the imported issue attributes
from Jira to temporary tables that will be created for the relevant Alfabet object classes.
Information about how to configure the ADIF import scheme to write data from the temporary
database tables to the Alfabet database is described in the reference manual Alfabet Data
Integration Framework.

4) The semantic connections must be configured that specify the integration pattern to use for the

database connection configured in the XML object JIRAIntegrationConfig. A semantic

definition should be created for each data connection configured in the XML object

JIRAIntegrationConfig. You can configure multiple semantic data connections for each data

connection configured in the XML element DataConnection in the XML object

JIRAIntegrationConfig. For each semantic connection you create, you must specify the

integration pattern to map objects in the Alfabet object hierarchy to the Jira project, project
version, or project component. You can choose an architecture-based integration pattern mapping
or a project-based integration pattern mapping. You may specify any level in the Jira project
hierarchy to begin the integration with. For example, you could choose to map Alfabet applications
to Jira project versions.

The following integration patterns may be specified for a project-based approach:

Integration Type Jira Project Jira Project
Version

Jira Project
Component

Jira Projects, Project Versions, and
Project Components

Project Stere-
otype 1

Project Stere-
otype 2

Project Stereo-
type 3

Jira Projects and Project Versions Project Stere-
otype 1

Project Stere-
otype 2

Jira Project and Project Components Project Stere-
otype 1

 Project Stereo-
type 3

Jira Projects Project Stere-
otype 1

Jira Project Versions Project Stere-
otype 2

Jira Project Versions and Project Com-
ponents

 Project Stere-
otype 2

Project Stereo-
type 3

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 123

Integration Type Jira Project Jira Project
Version

Jira Project
Component

Jira Project Components Project Stereo-
type 3

The following integration patterns may be specified for an architecture-based approach:

Integration Type Jira Project Jira Project Version Jira Project Com-
ponent

Jira Projects, Project Versions,
and Project Components

ICT Object (or
stereotype)

Application (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Jira Projects and Project Ver-
sions

ICT Object (or
stereotype)

Application (or ste-
reotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Jira Projects ICT Object (or
stereotype)

Project Versions Application (or ste-
reotype)

 Component (or ste-
reotype)

 Standard Platform
(or stereotype)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 124

Integration Type Jira Project Jira Project Version Jira Project Com-
ponent

Project Versions and Project
Components

ICT Object (or
stereotype)

Application (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Jira Projects, Project Versions,
and Project Components

 Application (or ste-
reotype)

Local Component
(or stereotype)

 Component (or ste-
reotype)

Local Component
(or stereotype)

 Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Project Components Component (or ste-
reotype)

Local Component
(or stereotype)

 Standard Platform
(or stereotype)

Platform Element
(or stereotype)

The following information is available:

• Configuring Connections to Import Jira Data to Alfabet

• Importing Jira Data to Alfabet via ADIF Schemes

Configuring Connections to Import Jira Data to Alfabet

Multiple connections to Jira® can be configured. Data will be imported from all defined Jira instances via

the same ADIF import scheme. The connections to Jira must be defined in the XML object JIRAIntegra-
tionConfig.

The general structure of the XML in the XML object JIRAIntegrationConfig is the following:

<JIRAIntegrationConfig>

<Proxy Url="" UserName="" Password="" Domain="" />

<DataConnections>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 125

<DataConnection

Name="JiraInstance1"

MajorVersion="7"

ServerUrl="$JiraServer"

UserName="$JiraUser"

Password="$JiraPassword"

PageSize="-1">

<IssueRank Enabled="true" RankFieldId="10005"/>

</DataConnection>

</DataConnections>

</JIRAIntegrationConfig>

The root XML element JIRAIntegrationConfig has a child XML element DataConnections.

Please note that server variables can be used in the XML object JIRAIntegrationConfig to
read the value of the XML attribute at runtime from the server alias configuration of the Alfabet
Web Application when a connection to Jira is established. For information about server variables,
see Configuring Server Variables for Integration and Interoperability Solutions.

To define a connection to Jira:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click JIRAIntegrationConfig and select Edit XML.... The XML object

JIRAIntegrationConfig opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template in the attribute grid of the XML object JIRAIntegrationConfig.
The template can be copied to the XML object to avoid manually writing the configura-
tion. In this case, you would edit the XML elements described below. The following infor-
mation describes a configuration from scratch.

3) Add a child XML element DataConnections to the root XML element JIRAIntegrationConfig.

4) Add a child XML element DataConnection to the XML element DataConnections. The XML
element DataConnections may contain multiple child XML elements DataConnection, each
defining a connection to a different Jira instance.

5) Specify the following XML attributes for each XML element DataConnection:

• Name: The name of the connection to Jira that is used to identify the connection in the ADIF
scheme configuration. A unique name must be specified for the connection.

• MajorVersion: Specify the major Jira version (5, 6, 7) in order to call the relevant Jira API (for
Jira v. 5 and 6, the Jira Server API; for Jira v. 7, Jira Server API and Jira Agile API). You should
only specify the major version (5, 6, 7) and not the minor version number of the Jira instance.
(For example, specify MajorVersion = 5, not MajorVersion = 5.3.2.).

• ServerURL: Specify the URL to the Jira instance for the connection.

• UserName: Specify the user name of the Jira user for the connection.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 126

• Password: Specify the password of the Jira user for the connection.

• MaxThreadCount: The number of parallel threads that may be used for simultaneous data
transfer is set per default to -1 in the XML attribute MaxThreadCount. This default value can
be modified as needed. The number of CPU cores is typically be a good starting point for the
MaxThreadCount value.

Please note the following regarding multi threading in the context of Jira integra-
tion:

• If the XML attribute MaxThreadCount is not defined the default behavior is
as follows:

• If the option Import Data Using JIRA Query Language
Definition is selected in the JIRA Import Assistant, no multi
threading will be performed.

• If the option Import Data Using List Box is selected in the JIRA
Import Assistant, the number of threads will be based on the
maximum number of options that have been selected in the JIRA
Projects, JIRA Issue Types, or JIRA Issue Statuses fields. For
example, if the user selects 5 projects, 3 issue types and 2 issue
statuses, then there will be 5 threads created (one for each project). If
the option Import Data Using List Box is selected in the JIRA
Import Assistant and no options are selected in the JIRA Projects,
JIRA Issue Types, or JIRA Issue Statuses fields, then multi threading
is based on the field having the most options. Thus, if 20 projects, 8
issue types and 5 issues statuses are available in the fields, there will
be 20 threads (one for each project)

• The specification of the XML attribute MaxThreadCount will override the
default behavior.

• PageSize: Specifies the response page size and is set per default to -1. This default value
takes the default page size value from the Jira instance, but can be modified as needed.
Please refer to the API documentation on the pagination capabilities of the different APIs in
JIRA before modifying the default value of -1.

• HTTPTimeout: Specify a timeout value in seconds if required. Otherwise, the default HTTP
timeout value will be used.

6) Optionally, you can add a child XML element IssueRank to the XML element DataConnection to
specify whether issue ranking should be imported with issues. This is only relevant for active
sprints. To populate issues with their ranking values, add the following XML attributes to the XML
element IssueRank:

• Enabled: Set to True.

• IssueRankID: Enter the ID of the field used for ranking issues in the Jira sprint. The ranking
of issues will then be populated in the RANK attribute of the ISSUE_SPRINT
mapping/temporary table in the ADIF scheme for all the active sprints.

7) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 127

Importing Jira Data to Alfabet via ADIF Schemes

Data import from Jira is performed by running an ADIF import scheme that triggers the data transmission
from Jira based on the configured connection details and stores the incoming data into temporary tables in
a predefined way. In the ADIF tab of Alfabet Expand, the import scheme can be configured using the JIRA
Import Assistant. The JIRA Import Assistant allows you to select which data connection defined in the

XML object JIRAIntegrationConfig to use as well as to specify the data to import.

Once the ADIF scheme to fetch appropriate content has been configured using the JIRA Import Assistant,
the integration must be completed with subsequent entries to map the imported artifacts in the temporary
tables to the relevant Alfabet object classes and objects. Therefore, to complete the integration of the data
to the Alfabet database, additional configuration of the import scheme is required to map the imported arti-
facts in the temporary tables to the relevant Alfabet object classes and objects. The configuration required
for this last step of the import will depend on how your enterprise chooses to implement the Jira data in
Alfabet. Finally, event templates must be configured to trigger the configured ADIF import schemes for the
synchronization functionalities.

This section only describes the handling of the JIRA Import Assistant. Information about how to
configure the ADIF import scheme to write data from the temporary database tables to the
Alfabet database is provided in detail in the reference manual Alfabet Data Integration Frame-
work and is not repeated here. For information about the configuration of event templates, see
the chapter Configuring Events in the reference manual Configuring Alfabet with Alfabet Expand.
A user with an administrative user profile may review the success of the triggered events in the
Event Administration Functionality. For more information, see the chapter Managing Events in
the reference manual User and Solution Administration.

The following table displays which Jira objects will be imported to Alfabet and any special settings required
in the Jira Import Assistant to import the Jira object:

Jira Object Content of Import Context of Import

Issues Options selected in the
JIRA Standard Issue
Fields to Import field.

Always imported

IssueCustom-
Fields

Options selected in the
JIRA Custom Issue
Fields to Import field.

Always imported

IssueCompo-
nents

ProjectComponents
associated with the im-
ported Issues.

Imported if Components is selected in the JIRA Custom Is-
sue Fields to Import field.

IssueSprints Sprints associated
with the imported Is-
sues.

Imported if Sprints or Sprints and Boards is selected
in the JIRA Sprint Import Option field. Relevant only for
Jira versions 5-7.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 128

Jira Object Content of Import Context of Import

IssueFixVer-
sions

ProjectVersions for
which the associated
Issues have been
fixed.

Imported if Fix Versions is selected in the JIRA Stand-
ard Issue Fields to Import field

IssueAf-
fectsVer-
sions

ProjectVersions
that the associated Is-
sues impact.

Imported if Affects Versions is selected in the JIRA
Standard Issue Fields to Import field

IssueLinks IssueLinks associ-
ated with the imported
Issues.

Imported if Linked Versions is selected in the JIRA
Standard Issue Fields to Import field

Projects Projects selected in
the JIRA Projects
field.

Always imported

ProjectVer-
sions

ProjectVersions in
Jira.

Always imported

ProjectCom-
ponents

ProjectComponents
in Jira.

Always imported

ProjectCate-
gories

ProjectCategories
in Jira.

May depend on Jira version.

StatusCate-
gories

Categorization of Sta-
tuses associated with
Issues.

May depend on Jira version.

Sprints Sprints in Jira. Imported if Sprints or Sprints and Boards is selected
in the JIRA Sprint Import Option field. Relevant only for
Jira versions 5-7. If the Jira version is below version 7, then
only Sprints associated with Issues will be imported.

GroupMembers Groups and the associ-
ated persons.

May depend on Jira version.

Boards Scrum Boards in Jira. Imported if Sprints and Boards is selected in the JIRA
Sprint Import Option field. Relevant only for Jira version 7.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 129

Jira Object Content of Import Context of Import

BoardSprints Sprints associated
with the imported
Boards.

Imported if Sprints and Boards is selected in the JIRA
Sprint Import Option field. Relevant only for Jira version 7.

Board-
Projects

Projects associated
with the imported
Boards.

Imported if Sprints and Boards is selected in the JIRA
Sprint Import Option field. Relevant only for Jira version 7.

The JIRA user who will execute the Jira import should have his / her language set to Alfabet pri-
mary language (English) in JIRA. In addition, the user should have the necessary permissions to
import the following data.

• Issues (using the Search Issues API)

• Projects

• Project Categories

• Project Components

• Project Versions

• Status Categories

• Group Members

• Fields

• Issue Types

• Issue Statuses

• Boards

• Sprints per Board

• Projects per Board

Errors due to characters that are non-compliant for XML or JSON processing may occur when
importing Jira content to Alfabet. For example, this could occur when importing JIRA bug tickets
that have descriptions in which error dumps or code snippets, etc. have been pasted. Therefore,
it is highly recommended that you consider the meaningfulness of the data that will be imported
from Jira to Alfabet. For example, in the case of Jira issues for bug fixes, the number of bug fixes
for applications may be relevant in portfolio management whereas the detailed descriptions of
the bug fixes typically will not be relevant. Please consider this when configuring the respective
JIRA import scheme using the JIRA Import Assistant.

After the XML object JIRAIntegrationConfig has been defined, you must define a new ADIF import

scheme to configure data integration using the JIRA Import Assistant:

1) In the ADIF tab in Alfabet Expand, right-click the ADIF Schemes root node in the explorer or any
sub-folder and select Create Import Scheme. The new import scheme is added to the explorer.
The attribute window of the new import scheme is displayed on the right.

2) In the attribute window, set the following attributes for the ADIF import scheme:

• Name: Enter a unique name. The name is used to identify the ADIF import scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Assistant: Select JiraImport_Assistant from the drop-down list.

• Import File Required : Ensure that the value False is set.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 130

• Commit After Run : If set to True, the result of the data import is written persistently to the
Alfabet database. If set to False, the import process will be rolled back after execution and no
changes will be written to the database. Configuration of the automatic start of workflows
during import is ignored when Commit After Run is set to False. It is recommended that you
set Commit After Run to False for a new import scheme to allow debugging without the risk
of corrupting the database. After the successful testing of the data import and verification
that the resulting changes to the Alfabet database are as expected, you can reset the
Commit After Run attribute to True to perform regular data import.

Please note the following:

• Setting the Commit After Run attribute rolls back all changes to data
records in existing tables caused by DML statements. The creation or deletion
of tables is not included in the roll back. For example, if you test an ADIF
scheme that is configured to persistently write temporary tables to the
database, these temporary tables will be created persistently even if Commit

After Run is set to False. SQL commands of the type OnActivate are also

excluded from roll back.

• When new objects are created during an ADIF import job, the data bind
mechanism assigns REFSTR values for the new objects. When Commit After
Run is set to False, the objects are not created in the database, but
nevertheless the REFSTR values are regarded as in use and will not be used
for data bind in the next ADIF run unless the Alfabet Server or Alfabet Expand
application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the

option Commit After Run is set to False for the import scheme.

• Drop Temp Tables : If set to True, all temporary tables are dropped after import. Only the
changes to the Alfabet database are stored persistently. If set to False, the temporary tables
are kept in the database after import is finished. Storing temporary tables persistently is only
required for special import/export cycles designed for data manipulation that require input
from the temporary tables of a previously set import. In most cases, setting this attribute to
True is recommended to clean the database of data that is not part of the Alfabet meta-
model.

3) In the explorer, right-click the node of the new ADIF import scheme and select Create ADIF
Scheme Details Using the JIRA Import Assistant. A warning dialog is displayed.

Using the assistant to modify an existing, already configured ADIF import scheme will
overwrite all automatically generated parts of the ADIF scheme. If changes have been
made to these import sets/entries, these changes will get lost.

4) Click Yes. The assistant opens in your standard Web browser.

5) In the field Data Connection, all XML elements DataConnection in your

JIRAIntegrationConfig XML object will be displayed. Click the data connection to import the

Jira data by means of the selected ADIF import scheme and click the button OK below the field. A
message is displayed that reminds you to reread the meta-model in Alfabet Expand.

6) To do so, click the Meta-Model menu in the toolbar of Alfabet Expand and select Reread Meta-
Model.

7) Return to the import scheme you have created for the Jira import and right-click the node and
select Modify ADIF Scheme Details Using the Jira Import Assistant.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 131

8) The JIRA Import Assistant opens. By default, if no filter criteria are provided and no explicit fields
are selected, all issues along with all their standard and custom fields will be imported from the
selected Jira connection. Define the following fields in the JIRA Import Assistant:

9) Select the Net Change checkbox if only Jira issues should be imported that have been changed
since the last update of the ADIF scheme.

10) In the Import Filter Type drop-down list, define the type of import you want to implement. Specify
one of the following:

• Import Data Using List Box if the issues to be imported may be filtered via certain
predefined filter criteria. These filter criteria are either selected project/s and/or an issue type
and/or issue status filters. Define the following fields:

Please note that the following filter criteria settings are cumulative. This means that
if some projects are selected and the user searches for and selects another project,
the previously defined filter criteria will remain selected unless they are explicitly
unchecked. For example, if you select a project and define the JIRA Issue Types
and JIRA Issue Statuses fields and then sect a second project in the JIRA Pro-
jects field, the settings defined in the JIRA Issue Types and JIRA Issue Statuses
fields for the first project will remain selected unless they are explicitly unchecked.

• JIRA Projects: Select one or more Jira projects to import. You can enter a name or
part of a name and click the Search button to find projects.

• JIRA Issue Types: Select one or more Jira issue types to import.

• JIRA Issue Statuses: Select one or more Jira issue statuses to import.

• Import Data Using JIRA Query Language Definition to specify to filter the Jira
issues to import. The query must be written in Jira Query Language and entered in the Enter
JQL Query field. For more information about Jira query language, please consult the
documentation delivered with the Jira product.

11) In the JIRA Sprint Import Option field, specify whether sprints only or sprints and boards should
be imported. The availability of these options will depend on the Jira version specified for the
connection.

Please note that the issue selection settings are cumulative. This means that if some is-
sue fields are selected and the user searches for and selects another project, the previ-
ously selected issue fields will remain selected unless they are explicitly unchecked.

12) You can specify which information should be imported for the projects (and, if relevant sprints
and/or boards):

• In the JIRA Standard Issue Fields to Import field, specify one or more standard issue fields
to import. If no standard issue field is selected, all standard issue fields will be imported. The
temporary tables in ADIF will be automatically created for standard issues.

• In the JIRA Custom Issue Fields to Import, specify one or more custom issue fields to
import. You can filter the custom issue fields displayed in the combo-box field by selecting a
custom field type (string, number, etc.) in the drop-down list. If no custom issue field is
selected, all custom issue fields will be imported.

Please note that the custom issues fields will be imported to a temporary table Is-
sueCustomFields. Custom issue fields may have scalar values (such as Field-
Name, Value, and FieldID) or referenced values (such as Group). For referenced

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 132

values, the REFID will be added to the temporary table. If no REFID is available for
the custom issue field, the REFNAME will be added to the temporary field.

Please note that the definition of the custom field type (String, Integer, etc.) set-
tings is cumulative. This means that if some custom field type (String, Integer,
etc.) are selected and the user searches for and selects another project, the previ-
ously selected custom field types (String, Integer, etc.) will remain selected un-
less they are explicitly unchecked.

13) Click the OK button to trigger the ADIF scheme to fetch the specified content from Jira and close
the JIRA Import Assistant. The temporary tables will be generated and displayed below the
import scheme node in the explorer. Or click Cancel to close the editor without triggering the
execution of the import scheme. If you click Cancel, your settings in the JIRA Import Assistant
will not be saved.

14) Close the browser window and execute Meta-Model > Reread from Database in Alfabet Expand.
You will then see all automatically generated ADIF elements in the ADIF scheme. Each ADIF import
entry will have data import to temporary tables defined via the attribute elements in the
Attributes folder. The import to the standard Alfabet database tables is not included into the
configuration.

15) To complete the integration of the data to the Alfabet database, additional configuration of the
import scheme is required to map the imported Jira data in the temporary tables to temporary
tables that will be created for the relevant Alfabet object classes and objects. The configuration
required for this last step of the import will depend on how your enterprise chooses to implement
the Jira data in Alfabet. For information about the configuration options available via ADIF import
schemes, see the reference manual Alfabet Data Integration Framework.

Exporting Alfabet Data to Jira

The export of Alfabet data to Jira® is available to support the planning and prioritization of operative devel-
opment work and provides support for bimodal IT and agile projects in the context of portfolio evaluation.
The goal of the Jira export is to create new issues in Jira based on issues that have been captured via de-
mands, features, issues, value nodes, etc. in Alfabet. In Jira, issues are typically assigned to a project and
projects will typically have a ProjectVersion and possibly ProjectComponent defined.

For example, a banking enterprise captures demands in order to plan the modification of the
bank's trading capabilities. The demands are assigned to projects in Alfabet. The Project stereo-
type "Program" in Alfabet could be mapped to Projects in the Jira instance. The demands will
be exported as issues to Jira in order to implement the projects and operationalize the needed
changes. The subordinate project stereotype Project could be mapped to the Jira ProjectVer-
sion and the project stereotype Project Step would be mapped to the Jira ProjectComponent.
The following mapping schema provides an example of how Jira projects could be mapped to a
project structure in Alfabet:

Alfabet Class Jira Class

Project Stereotype 1 Project

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 133

Project Stereotype 2 ProjectVersion

Project Stereotype 3 ProjectComponent

Demand Issue

An overview of all Jira objects that can be imported based on the import of Alfabet data to Jira is
provided in the section Importing Jira Data to Alfabet.

Because issues in Jira are typically assigned to Jira projects, your enterprise must first consider the follow-
ing questions in order to conceptualize the mapping of your enterprise's data in Alfabet to Jira:

• Which Jira projects will the exported issues be mapped to. For example, a Jira project may target a
product such as FD Trading. Projects in Jira can either be found by specifying the project key of the
projects or by finding the relevant projects based on key identifiers.

• Which Jira issue type will the information from Alfabet be mapped to. For example, the Jira issue
types Bug or Change Requests.

• Which objects in Alfabet will be mapped as issues to Jira. Typically, this would be a demand, issue,
feature, or value node, but other classes could also be mapped. For example, the demand Integrate
Risk Management could be exported to Jira as a change request issue.

• Will existing issues in Jira be updated with data from the Alfabet objects or will new issues be
created in Jira?

• Once it is understood which Alfabet objects will be exported to which Jira projects, the integration
pattern must be specified to map the relevant Alfabet objects to Jira projects, project versions, and
project components. You may specify any level in the Jira project hierarchy to begin the integration
with. It is possible to implement one or more predefined integration patterns. For example, one of the
integration patterns for ICT objects allows you to map a selected ICT Object Stereotype to the Jira
project, Application (or stereotype) to the Jira project’s version, and Local Component (or
stereotype) to the Jira project's component. Whether your enterprise chooses an integration pattern
for ICT objects or projects will depend on your methodology of using Jira. If your company
associates demands with products in Alfabet, the ICT object integration pattern may be more
relevant, but if demands are associated with projects, the project hierarchy integration pattern may
be more suitable.

• Which Jira instance will you connect to in order to map the Alfabet objects to issues for the specific
projects. Alfabet’s integration with Jira supports multi-instance scenarios as typical for large
enterprises.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 134

 FIGURE: Overview of export to Jira

The following describes an overview of the steps required to configure the export to Jira.

1) Configure custom properties of type String in order to populate values in Jira for projects, project
versions, and project components. Custom properties will be needed to populate the Jira
identifiers such as Name, ID, or Key. Please note the following character restrictions for the Jira
user interface:

Values in Jira Jira Projects Jira Project Versions/Project Components Jira Issues

Name 80 255 not relevant

ID 18 18 18

Key 10 not relevant 10

Summary not relevant not relevant 255

2) Configure the XML object JIRAIntegrationConfig. The same XML object

JIRAIntegrationConfig used to import data from Jira to Alfabet is used to configure the

connection to export Alfabet data to Jira. The following should be defined in the XML object

JIRAIntegrationConfig:

• XML element DataConnection: Specify data connections to one or more Jira instances.

• XML element ExportSettings: Specify the Alfabet report categories that will be used by the
ADIF assistant to list the primary and secondary configured reports that find the objects and
references in Alfabet that will be exported as issues to Jira.

• XML element JIRADataTypeIdentifierTypes: Specify the identifiers needed to search for
projects and issues in Jira. This includes an identifier to search for projects (such as Key) and
identifier to search for issue types (such as Name).

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 135

• XML element JIRAProjectFilters: Specify filters used when searching for projects while
mapping them with Alfabet artifacts. For example, the filter could specify that only projects
with a project type equal to "Software" or "Business" are returned.

• XML element AlfabetClassMappingStandardPropertySettings: Specify the standard
object class properties of the type String to populate the fields in the Jira Connection for
Project-Based Integration and Jira Connection for Architecture-Based Integration
editors available in the Jira Connection view in the Integration Solutions Configuration
functionality.

3) Configure the reports that will be used to find the Alfabet objects that will be exported as issues.
You may configure two configured reports: A primary report finds the Alfabet objects such as
demands, issues, features, or value nodes based on scalar attributes. The secondary report is used
to complement the issue information with reference arrays, string arrays, etc. (n:n relationships).

4) Configure a report to find the Alfabet object's that are allowed to integrate with Jira projects. The
objects are typically found via the stereotype specification in the Stereotype Filter field in the
Jira Connection for Project-Based Integration and Jira Connection for Architecture-Based
Integration editors available in the Jira Connection view in the Integration Solutions
Configuration functionality. The configured report can be selected in the Object Filter Report
field in the editors as an additional mechanism to find objects. The report must provides a list of
Alfabet REFSTRs of the appropriate projects that are allowed to integrate with Jira projects. The
Link to Jira Project editor option will be available in the Action menu in the object profiles of the
projects found via the definition of the Stereotype Filter field or the Object Filter Report field.

5) Define which information from Alfabet shall be used to constitute Jira issues by defining the ADIF
export scheme by means of the Jira Export Assistant. The Jira Export Assistant focuses on two
Alfabet reports configured to find the Alfabet objects to export (primary report) and the references
to export (secondary report). The following must be specified:

Jira export is based on the principle of consistency between the Jira user interface and
Jira API. However, the Jira user interface and Jira API may have different formats, which
is the case for date fields for example. Please note that users configuring the ADIF ex-
port scheme should not rely solely on the filter fields in the Jira user interface but in-
stead should understand the format that the Jira API expects and configure the ADIF
export scheme accordingly. If the formats are inconsistent, the results of the export
from Alfabet to Jira may not be correct.

• In the Map Primary Alfabet Report Columns to Jira Issue Fields tab, select the data
connection to use.

• Select a project and an issue type that have at least one issue defined and have a Jira issue
structure that is representative for the targeted export. The mapping table will be pre-
populated with the fields specified for the create and update actions of the selected project
and issue type. Any fields that are not returned based on the schema retrieval can be
individually added. The Jira issue fields will be mapped to the relevant columns of the primary
report.

• Select the primary report to find the Alfabet objects.

• For each field displayed in the dataset, map the relevant Alfabet project in the Report
Column Name. The dataset indicates which Jira fields are mandatory to create an issue as
well as to update an issue.

• In the Map Secondary Alfabet Report Columns to Jira Issue Fields tab, select one or more
secondary reports to specify the mapping for multi-valued attributes of Jira issues such as
the assignment of Jira project versions and Jira project components.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 136

6) Once the mapping has been completed, event templates must be configured to trigger the ADIF
export schemes when the users execute the Synchronize with Project Data functionality in the
relevant object profiles. For the export from Alfabet, the event template should return a set of
objects that can be mapped to Jira Issues. The set of objects returned by the event template must
be a subset of the objects returned by the primary report of the ADIF job referenced by the event
template. Only the returned objects that are common to both the event template and the primary
report will be exported to Jira. For additional information about the configuration of event
templates for export from Alfabet, see the section Configuring the Event Templates to Trigger the
ADIF Export Schemes for Synchronization.

7) The semantic connections must be configured that specify the integration pattern to use for the

database connection configured in the XML object JIRAIntegrationConfig. A semantic

definition should be created for each data connection configured in the XML object

JIRAIntegrationConfig. You can configure multiple semantic data connections for each data

connection configured in the XML element DataConnection in the XML object

JIRAIntegrationConfig. For each semantic connection you create, you must specify the

integration pattern to map objects in the Alfabet object hierarchy to the Jira project, project
version, or project component. You can choose an architecture-based integration pattern mapping
or a project-based integration pattern mapping. You may specify any level in the Jira project
hierarchy to begin the integration with. For example, you could choose to map Alfabet applications
to Jira project versions.

The following integration patterns may be specified for a project-based approach:

Integration Type Jira Project Jira Project
Version

Jira Project
Component

Jira Projects, Project Versions, and
Project Components

Project Stere-
otype 1

Project Stere-
otype 2

Project Stereo-
type 3

Jira Projects and Project Versions Project Stere-
otype 1

Project Stere-
otype 2

Jira Project and Project Components Project Stere-
otype 1

 Project Stereo-
type 3

Jira Projects Project Stere-
otype 1

Jira Project Versions Project Stere-
otype 2

Jira Project Versions and Project Com-
ponents

 Project Stere-
otype 2

Project Stereo-
type 3

Jira Project Components Project Stereo-
type 3

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 137

Jira issues will be mapped to the relevant Alfabet object class (for example, Demand, Feature,
Issue, Value Node, etc.) specified in the relevant ADIF scheme associated with the Jira connection.

The following integration patterns may be specified for an architecture-based approach:

Integration Type Jira Project Jira Project Version Jira Project Com-
ponent

Jira Projects, Project Versions,
and Project Components

ICT Object (or
stereotype)

Application (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Jira Projects and Project Ver-
sions

ICT Object (or
stereotype)

Application (or ste-
reotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Jira Projects ICT Object (or
stereotype)

Project Versions Application (or ste-
reotype)

 Component (or ste-
reotype)

 Standard Platform
(or stereotype)

Project Versions and Project
Components

ICT Object (or
stereotype)

Application (or ste-
reotype)

Local Component
(or stereotype)

 ICT Object (or
stereotype)

Component (or ste-
reotype)

Local Component
(or stereotype)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 138

Integration Type Jira Project Jira Project Version Jira Project Com-
ponent

 ICT Object (or
stereotype)

Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Jira Projects, Project Versions,
and Project Components

 Application (or ste-
reotype)

Local Component
(or stereotype)

 Component (or ste-
reotype)

Local Component
(or stereotype)

 Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Project Components Component (or ste-
reotype)

Local Component
(or stereotype)

 Standard Platform
(or stereotype)

Platform Element
(or stereotype)

Jira issues will be mapped to the relevant Alfabet object class (for example, Demand, Feature,
Issue, Value Node, etc.) specified in the relevant ADIF scheme associated with the Jira connection.

The following information is available:

• Configuring Connections and Mapping to Export Data from Alfabet to Jira

• Configuring the Primary and Secondary Reports

• Configuring Object Filter Reports

• Configuring the ADIF Export Assistant to Export Alfabet Data to Jira

• Configuring the Event Templates to Trigger the ADIF Export Schemes for Synchronization

Configuring Connections and Mapping to Export Data from Alfabet to Jira

The following must be configured in the XML object JIRAIntegrationConfig:

• Specify data connections to one or more Jira instances in the XML element DataConnection.

• Specify the Alfabet report categories that will be used by the ADIF assistant to list the primary and
secondary configured reports that find the objects and references in Alfabet that will be exported as
issues to Jira. This is done via the XML element ExportSettings.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 139

• Specify the identifiers needed to search for projects and issues in Jira via the XML element
JIRADataTypeIdentifierTypes. This includes an identifier to search for projects (such as Key)
and identifier to search for issue types (such as Name).

• Specify filters to limit the Jira projects, project versions, and project components available in the
Link to Jira Project editor when users link an Alfabet object to Jira. This is done via the XML
element JIRAProjectFilters. For example, the filter could specify that only projects with a
project type equal to "Software" or "Business" are returned.

• Specify the standard object class properties of the type String to populate the Jira property fields
in the Jira Connection for Project-Based Integration and Jira Connection for Architecture-
Based Integration editors available in the Jira Connection view in the Integration Solutions
Configuration functionality. This is done via the XML element
AlfabetClassMappingStandardPropertySettings.

You can refer to the XML Template attribute for an example of the specification of the XML ob-
ject JIRAIntegrationConfig.

The connection to Jira® must be defined in the XML object JIRAIntegrationConfig. Multiple connec-

tions to Jira can be configured. Data will be imported from all defined Jira instances via the same ADIF im-
port scheme.

Please note that server variables can be used in the XML object JIRAIntegrationConfig to
read the value of an XML element at runtime from the server alias configuration of the Alfabet
Web Application when a connection to Jira is established. For information about server variables,
see Configuring Server Variables for Integration and Interoperability Solutions.

To define a connection to Jira:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click JIRAIntegrationConfig and select Edit XML.... The XML object

JIRAIntegrationConfig opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template in the attribute grid of the XML object JIRAIntegrationConfig.
The template can be copied to the XML object to avoid manually writing the configura-
tion. In this case, you would edit the XML elements described below. The following infor-
mation describes a configuration from scratch.

3) Add a child XML element DataConnections to the root XML element JIRAIntegrationConfig.

4) Add a child XML element DataConnection to the XML element DataConnections. The XML
element DataConnections may contain multiple child XML elements DataConnection, each
defining a connection to a different Jira instance.

5) Specify the following XML attributes for each XML element DataConnection:

• Name: The name of the connection to Jira that is used to identify the connection in the ADIF
scheme configuration. A unique name must be specified for the connection. The name of the
data connection can be assigned to a semantic Jira connection in the Data Connection field
in the he Jira Connection for Project-Based Integration and Jira Connection for
Architecture-Based Integration editors.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 140

• MajorVersion: Specify the major Jira version (5, 6, 7) in order to call the relevant Jira API (for
Jira v. 5 and 6, the Jira Server API; for Jira v. 7, Jira Server API and Jira Agile API). You should
only specify the major version (5, 6, 7) and not the minor version number of the Jira instance.
(For example, specify MajorVersion = 5, not MajorVersion = 5.3.2.).

• ServerURL: Specify the URL to the Jira instance for the connection.

• UserName: Specify the user name of the Jira user for the connection.

• Password: Specify the password of the Jira user for the connection.

• MaxThreadCount: The number of parallel threads that may be used for simultaneous data
transfer is set per default to -1 in the XML attribute MaxThreadCount. This default value can
be modified as needed. The number of CPU cores is typically be a good starting point for the
MaxThreadCount value. The specification of the XML attribute MaxThreadCount will override
the default behavior.

• HTTPTimeout: Specify a timeout value in seconds if required. Otherwise, the default HTTP
timeout value will be used.

6) Add a child XML element ExportSettings to the root XML element JIRAIntegrationConfig:

• Specify the Alfabet report categories containing the configured reports that shall be available
in the ADIF Export Assistant. The report categories should contain the relevant primary and
secondary configured reports that find the objects and references in Alfabet that will be
exported as issues. The same report categories may be specified for both the primary and
secondary reports:

• PrimaryAlfabetReportCategory: Specify one or more relevant report categories of
the configured reports that will find the Alfabet objects to export. Multiple report
categories should be listed as comma-separated values. All configured reports
assigned to the specified category value will be listed in the Primary Alfabet Report
field in the Map Primary Alfabet Report Columns to JIRA Issue Fields tab in the
ADIF Export Assistant.

• SecondaryAlfabetReportCategory: Specify one or more relevant report categories
of the configured reports to specify the mapping for multi-valued attributes of Jira
issues such as the assignment of Jira project versions and Jira project components.
Multiple report categories should be listed as comma-separated values. All configured
reports assigned to the specified category value will be listed in the Select Secondary
Report to Define Mapping field in the Map Secondary Alfabet Report Columns to
JIRA Issue Fields tab in the ADIF Export Assistant.

• UpdateJIRAObjectsOnStructureSync: Enter True if Jira projects should be
updated when synchronizing the Alfabet architecture/project structure. Enter False if
Jira projects should not be updated when synchronizing the Alfabet
architecture/project structure. The XML attribute
UpdateJIRAObjectsOnStructureSync is set to True per default.

• Specify the following in order to enhance the performance when importing a large set of Jira
issues to Alfabet:

• BulkCreateMode: Set to True for large scale synchronization with single Jira
Instances. This is not relevant if a large number of issues is synchronized across a
considerable number of Jira instances. The default value is False.

• BulkCreateBatchSize: Specify a batch size for the creation of issues in the Jira
system that is being connected. The default value is 200.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 141

• JIRAFieldIDToMapAlfabetObject: Specify the custom field in Jira that stores
object ID of the Alfabet object on the issue in Jira. It is recommended that this is a
ReadOnly field in Jira. Please note that the custom field should be present on all Jira
instances used to create and update/edit issues in Jira so that the field is available on
the associated Jira API. This field must be represented by the fully-qualified identifier
(such as customfield_10202 where the five digit integer is the variable).

• BulkCreateMaxThreadCount: Specify the number of parallel threads to be spawned
when creating issues in Jira. This number is a function of various aspects of the Jira
installation (such as machine size and configuration of Apache web server used as
application server for Jira and the size, infrastructure, and configuration of the Jira
database (in particular size of the connection pool available). If not specified, the
MaxThreadCount property value will be used.

7) Specify the identifiers (ID, Key, or Name) needed to find Jira projects when synchronizing the
Alfabet structure (project hierarchy or ICT object structure) to the Jira project hierarchy or to
export issues to Jira. Jira identifiers include ID, Key, or Name for projects and Key and Name for
issues. To do so, add a child XML element JIRADataTypeIdentifierTypes to the root XML
element JIRAIntegrationConfig and specify the following XML attributes for the XML element
DefaultDataTypeIdentifierTypes:

• DefaultDataTypeIdentifierType: The default identifier if no matches are found via the
other specified data types. This is typically ID.

• IssueDataTypeIdentifierType: Specify an identifier to find Issues in Jira. Jira issue
identifiers include ID or Key.

• ProjectDataTypeIdentifierType: Specify an identifier to find for projects in Jira. Jira
project identifiers include ID, Key, or Name.

• IssueTypeDataTypeIdentifierType: Specify an identifier to find issues in Jira via the
IssueType field values.

• PriorityDataTypeIdentifierType: Specify an identifier to search for projects in Jira via
the Priority field values.

• ComponentDataTypeIdentifierType: Specify an identifier to search for projects in Jira via
the Component field values.

• VersionDataTypeIdentifierType: Specify an identifier to search for projects in Jira via
the Version field values.

8) Specify filters to limit the number of projects displayed in the Link to JIRA Project editor available
in the object profile of a relevant Alfabet object. You can specify multiple conditions for each filter.
The filter can be assigned to a semantic Jira connection in the Project Filter field in the Jira
Connection for Project-Based Integration and Jira Connection for Architecture-Based
Integration editors available in the Integration Solutions Configuration functionality available
in the Alfabet user interface. To do so, add a child XML element JIRAProjectFilters to the root
XML element JIRAIntegrationConfig and add a child XML element Filter for each filter
definition required.

• Specify the following XML attributes for the XML element Filter.

• Name: Enter a name for the filter.

• Desc: Enter text providing information about the filter criteria required. This will be
displayed in the Project Filter Description field in the Jira Connection for Project-
Based Integration editor and Jira Connection for Architecture-Based Integration

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 142

editor available in the Jira Connection view in the I Integration Solutions
Configuration functionality.

• Add one or more XML elements Condition as a child element of the XML element Filter
and specify the following XML attributes for the XML element Filter.

• PropertyName: Specify the property of the Jira project that should be used as filter
criteria. You may specify any of the following: Key, Name, Type

• Operation: Specify the operation for the property. You may specify any of the
following operations: StartsWith, Contains, Equals.

• Value: Specify the value that should be used to fulfill the search criteria.

9) Specify the standard object class properties of the type String to populate the relevant fields to
map Jira properties in the Jira Connection for Project-Based Integration editor and Jira
Connection for Architecture-Based Integration editors available in the Jira Connection view
in the Integration Solutions Configuration functionality. Custom properties of the type String
will automatically be added to the editors. To do so, add a child XML element
AlfabetClassMappingStandardPropertySettings to the root XML element
JIRAIntegrationConfig for each class definition required. Please note the following:

• If your enterprise will used a project-based integration, specify the following XML attributes
for the XML element AlfabetClassMappingStandardPropertySettings.

• Class: Enter Project.

• PermittedStandardProperties: Specify the standard properties that should be
available in the various editor fields in the Jira Connection for Project-Based
Integration editor. The field allows you to select the Alfabet property that is used to
store specific attributes for projects in Jira.

• If your enterprise will used an architecture-based integration, specify the following XML
attributes for the XML element AlfabetClassMappingStandardPropertySettings. The
following classes are relevant depending on the integration pattern specified:

• Class: Enter the name of the class relevant for the architecture-based integration. For
example, if you select the integration pattern ICT Object > Application > Local
Component, you must create a Class entry for each class other than ICT Object.

An entry cannot be created for the class ICT Object because the Jira Project
values such as ID, Key and Name are stored in custom properties only.

• PermittedStandardProperties: Specify the standard properties that should be
available in the various editor fields in the Jira Connection for Architecture-Based
Integration editor. The field allows you to select the Alfabet property that is used to
store specific attributes for projects in Jira.

10) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Configuring the Primary and Secondary Reports

For each entry created in the ADIF export scheme, a primary configured report and possibly a secondary
configured report should be created to find the Alfabet objects that will be exported as issues. The primary

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 143

and secondary reports must be of the type Query or NativeSQL. Please note that only the primary config-
ured report is mandatory. The secondary report is only required if other issue fields of n:n relationships or
that have sub-properties must be exported.

The primary report finds the Alfabet objects such as demands, issues, features, or value nodes based on
scalar attributes. The primary configured report must be defined in order to populate the Jira issue fields
that require only a single scalar value. Typical values would be Summary, Description, Project, Issue
Type, etc. The secondary report is used to complement the issue information with reference arrays, string
arrays, etc. (n:n relationships) and thus should be defined to populate the JIRA issue fields that may require
more than one value (arrays) or that have sub-properties such as Issue Link or Attachment. The fields
that might be filled with multiple values include, for example, Fix Versions, Affects Versions, Compo-
nents, etc. The secondary report is also required to provide values of fields that have sub-properties. For
example, the field Issue Link requires the values for parent issue and the type of relation.

For more information about defining configured reports, see the chapter Configuring Reports in
the reference manual Configuring Alfabet with Alfabet Expand.

All issues are created in single record-by-record export. Please note that due to limitations of
Jira, a rollback is not possible.

Please note the following information regarding the report configuration and execution:

• The identifiers that are relevant for the primary and secondary reports must be specified in the XML

element JIRADataTypeIdentifierTypes in the XML object JIRAIntegrationConfig.

• Multiple primary and secondary reports may be defined. The Category attribute of the reports must
be defined. The specification of the XML element PrimaryAlfabetReportCategory in the XML

object JIRAIntegrationConfig will determine which reports will be available for a selected data

connection in the Primary Alfabet Report field in the Map Primary Alfabet Report Columns to
JIRA Issue Fields tab in the ADIF Export Assistant. Likewise, the XML element
SecondaryAlfabetReportCategory will determine the secondary reports available in the Map
Secondary Alfabet Report Columns to JIRA Issue Fields tab.

• At least one primary configured report must be defined as the source of the export data. This report
must find the Alfabet objects to export.

The following SQL query is an example of the query specified for a primary report:

SELECT j.REFSTR, j.REFSTR AS’ConnID', (SELECT EXTERNALID FROM
INTEGRATIONCONNECTIONUSAGE WHERE A_OBJECT = ftr.REFSTR)
AS’ID', ftr.REFSTR AS’Object', ftr.DESCRIPTION,
ftr.STATUS’Status',’New Feature'‘IssueType',
ftr.NAME,’Customer' AS’User', icto.SC_JIRAKEY’Project'

FROM FEATURE ftr, APPLICATION app, ICTOBJECT icto,
JIRA_DBCONNECTION j, INTEGRATIONCONNECTIONUSAGE ictou

WHERE ftr.OBJECT = app.REFST

AND app.ICTOBJECT = icto.REFSTR

AND j.NAME =‘ICT-App-LCom'

AND ictou.CONNECTION = j.REFSTR

AND ictou.A_OBJECT = icto.REFSTR

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 144

The output of the report shall populate Jira issue fields that require only a single scalar value such as Sum-
mary, Description, Project, Issue Type, etc. The primary configured report must return the following
columns:

• Alfabet Integration Connection ID: The REFSTR of the Jira database connection used for the
export.

• Alfabet Object ID: The REFSTR value of the Alfabet object that shall be exported and mapped
as the Jira issue.

• Jira Project ID or Key: The ID or Key of the JIRA project must be included in the report.
You can either provide it as a string or capture it in a custom property of an Alfabet object
class that is mapped to JIRA projects and read it from this object class when defining the
report.

Whether ID or Key is specified will depend on the specification in the XML element
JIRADataTypeIdentifierTypes in the XML object JIRAIntegrationConfig.
This applies to the columns Project ID or Key, Issue ID or Key, and Jira Issue
Type ID or Key.

• Jira Issue ID or Key: Please note that this column is optional. If a value is provided for Issue
ID or Key, the corresponding Jira issue will be updated with the new set of values. If a value
forIssue ID or Key is not provided, a new issue will be created in Jira for that record. For
issues that have already been exported from Alfabet, the Jira Issue ID can be read from the
object class property ExternalID of the object class IntegrationConnectionUsage.

• Jira Issue Type ID or Key

• Other relevant single-value issue fields in Jira such as Summary, Description, Assignee,
etc.

• A secondary configure report should be defined to find the references and populate the Jira issue
fields that are non-scalar and that may require more than one value (arrays) or that have sub-
properties such as Issue Link or Attachment. This includes, for example, Fix Versions,
Affects Versions, Components, etc.

• The names of the secondary report columns relevant for the Jira Issue Field

columns must be specified in the XML element JIRADataTypeIdentifierTypes

in the XML object JIRAIntegrationConfig. The export will only populate these

columns and all other columns will be ignored. Please note the following:

• All non-scalar fields (that have sub-properties) and fields with arrays that
are part of the issue schema can be exported through the secondary
report.

• To export issue fields of type Array the users need to provide their values
through 3 columns in the report: a column for Issue Field ID, a column
for Issue Field Name, and a column for Issue Field Value.

• To export Issue fields that have sub-properties like Issue link and
Attachment, users need to map report columns for each individual sub-
property to the corresponding Issue Field column in order to export
them correctly.

• A unique combination of the Alfabet Integration Connection ID, Jira Project ID,
and Alfabet Object ID is required if the Jira Issue ID is not given or known by the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 145

primary or secondary reports. If multiple issues have same Issue ID and Alfabet
Integration Connection ID or same combination of Alfabet Integration Connection
ID, Jira Project ID, and Alfabet Object ID, the last ID value exported will
override the ID other values and be written in the
IntegrationConnectionUsage database table. However, only the attributes
specified in the primary report will be overwritten and the update may therefore
be cumulative. Please note the following regarding the secondary report:

• If the combination of Alfabet Integration Connection ID, Jira Project ID,
and Alfabet Object ID is same for multiple rows (and Issue ID/Key is
empty), then all rows apply to an issue that will be created.

• If the combination of Alfabet Integration Connection ID, Jira Project ID,
and Alfabet Object ID are the same for multiple rows (and Issue ID/Key is
not empty), then all the rows apply for the same existing issue that will be
updated

• An Alfabet property of type StringArray can be mapped to a Jira Issue Field
column if a multi-select value should be set. Each value of the string array must
be available as an individual option in the corresponding Jira Issue Field
column.

The secondary configured report should return the following columns:

• Alfabet Object ID: The REFSTR value of the Alfabet object that shall be exported and mapped
as the Jira issue.

• Jira Issue field ID or Issue Field Name: For custom fields, the Issue field ID
should be specified since names may not be unique for custom fields. Standard fields can be
identified via either Issue Field ID or Issue Field Name.

• Jira Issue Field Value: A new row will be created for any field that has sub-properties
such as Issue Link or Attachment. For an Issue Link field, for example, the columns
Issue Link Outward Issue and Issue Link Relation will be added to the standard list
of issue field columns.

• Please note the following additional configuration requirements regarding the export of Web
links and documents.

• To export Alfabet Web links to Jira.

1) In Jira, ensure a custom field of type Text Field (multi-line) is available. If this is not
available, it is necessary to create a custom field of type Text Field (multi-line).

2) Navigate to the field configuration for the custom field.

3) Navigate to the field and click Renderers.

4) Select Wiki Style Renderer.

5) In the Alfabet report, provide the value for the Web links using the format [new
link|http://example.com].

• To export documents to Jira.

1) 23540Jira is unable to provide unique identifiers for attached documents. Therefore, if the
same attachment is sent again for an issue, the issue will contain the same document multiple
times. This is a limitation of Jira and it is advised that documents are only exported when
required. The configured report should specify that documents are only added to the result

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 146

data set if the CREATION_DATE and/or CHANGE_DATE properties of the class ALFA_IDOCUMENT
return a date later than the last execution of the Jira issue synchronization job.

2) In the configured report, a dataset instruction RetrieveIDOCPath must be defined to trigger
the export of attachments to the runtime folder of the Alfabet Web Application The
configuration of the dataset instruction is described in the section Exporting Attachments to a
Runtime Folder During Report Execution in the chapter Defining Queries in the reference
manual Configuring Alfabet with Alfabet Expand.

• If issues are created in Jira based on an Alfabet export, then the Issue ID or Issue Key used for
the export will be updated in the IntegrationConnectionUsage database table. If the Jira Issue
ID is not given or known by the primary or secondary reports, a unique combination of the Alfabet
Integration Connection ID, Jira Project ID, and Alfabet Object ID is required. If multiple issues have
same Issue ID and Alfabet Integration Connection ID or same combination of Alfabet Integration
Connection ID, Jira Project ID, and Alfabet Object ID, the last ID value exported will override the
ID other values. However, only the attributes specified in the primary report will be overwritten and
the update may therefore be cumulative.

• If the combination of Alfabet Integration Connection ID, Jira Project ID, and Alfabet Object
ID is same for multiple rows (and Issue ID/Key is empty), then all rows apply to an issue that
will be created.

• If the combination of Alfabet Integration Connection ID, Jira Project ID, and Alfabet Object
ID are the same for multiple rows (and Issue ID/Key is not empty), then all the rows apply
for the same existing issue that will be updated

• The report definitions are stored internally as part of the ADIF scheme. If an update is made to either
the primary or secondary configured report, ADIF scheme must be updated. To do so, the ADIF
scheme needs to be opened for modification via the ADIF Export Assistant, select the relevant
entry in the Select Export Entry to Edit field, click the Edit button and click the Save Temporary
Entry button. Go to the second tab, select a relevant report in the Select Secondary Report to
Define Mapping field, click the Edit button and click the Save Temporary Entry button. Repeat this
for each secondary report that needs to be saved. When finished, click the OK button to save
changes to the Alfabet database and close the ADIF Export Assistant.

Configuring Object Filter Reports

Optionally, you can configure a report to find the Alfabet objects that are allowed to integrate with Jira pro-
jects. The objects are typically found via the stereotype specification in the Stereotype Filter field in the
Jira Connection for Project-Based Integration and Jira Connection for Architecture-Based Integra-
tion editors available in the Jira Connection view in the Integration Solutions Configuration functional-
ity. However configured reports are an additional mechanism to find objects to integrate with Jira projects,
Jira project versions, and Jira project components.

The configured reports can be assigned to a semantic Jira connection in the Object Filter Report field in
the Jira Connection for Project-Based Integration and Jira Connection for Architecture-Based Inte-
gration editors. The Link to Jira Project editor option will be available in the Action menu in the object
profiles of the objects found via the definition of the Stereotype Filter field or the Object Filter Report
field.

Please note the following about the configured report:

• The report must return a list of Alfabet REFSTR in the first column of the appropriate projects that
are allowed to integrate with Jira projects.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 147

• The REFSTR must be for the same class that the Object Filter Report field is defined for.

When an Alfabet object is synchronized with Jira, the objects will only be synchronized if
they are in the return set of the associated report defined in the Object Filter Report
field or in the returned set of object stereotype specified in the Stereotype Filter field.
For example, a report configured as an object filter for the class Application has been
configured to return only applications with the status set to Approved. Thus, a new ap-
plication with the status set to Draft shall not be used to create a new version in the as-
sociated Jira project. In this case, the Link to Jira Project editor option will be available
in the Action menu in the object profile of the new application with the status set to
Draft.

• The Category attribute pf the configured report must be set to JIRAIntegration. Note that only
the configured reports for which the Category attribute has been set to JIRAIntegration will be
displayed in the Object Filter Report field.

For more information about defining configured reports, see the chapter Configuring Reports in
the reference manual Configuring Alfabet with Alfabet Expand.

Configuring the ADIF Export Assistant to Export Alfabet Data to Jira

Once the Alfabet structure and Jira project structure have been mapped and linked, you must configure
the export of issues to Jira based on the primary and secondary configured reports and the configuration
of a corresponding ADIF scheme. To do so, you must map the fields in Jira used to capture information
about issues to the relevant columns in the configured reports. The primary configure report allows you to
capture scalar Jira issues fields with a single value and the secondary report allows you to capture fields
that require more than one value (arrays) or that have that sub-properties such as Issue Link or At-
tachment. Once the mapping has been completed, the ADIF export scheme can be executed via a batch
job and the relevant Alfabet objects such as demands, features, etc. will be exported as issues to Jira.

When you define the JIRA Export Assistant, the dataset in the assistant must first be filled with the rele-
vant issue fields that are used to capture information about the issues in Jira. The various issue fields must
be mapped to the columns of the configured report. To do so, you must define a schema retrieval that pop-
ulates the dataset with the issue fields. If not all issue fields are retrieved by the schema, you can manually
add the remaining issue fields. The schema retrieval requires the following definition:

• A data connection to use to retrieve the information from the Jira instance

• A Jira project that has existing issues defined. Please note that this does not necessarily have to the
actual project that the issues will be assigned to.

• The issue type for which you want to map the issue fields.

The target Jira instance should have at least one issue of every issue type in the selected project
in order to retrieve the schema information. If an issue type is selected for which no issue exists
in the selected project, the issue fields cannot be retrieved and the dataset will not be populated.

Jira export is based on the principle of consistency between the Jira user interface and Jira API.
However, the Jira user interface and Jira API may have different formats, which is the case for
date fields for example. Please note that users configuring the ADIF export scheme should not
rely solely on the filter fields in the Jira user interface but instead should understand the format

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 148

that the Jira API expects and configure the ADIF export scheme accordingly. If the formats are
inconsistent, the results of the export from Alfabet to Jira may not be correct.

Every issue is associated with one project. Alfabet may have objects (demands) that are associated with
multiple projects.

1) Create an ADIF export scheme with at least one entry. Please note that data will be exported to all
defined Jira instances via the same ADIF export scheme. For more information about how to
create the ADIF export scheme and entry, see the reference manual Alfabet Data Integration
Framework.

2) Set the Alfabet User Interface Behavior attribute of the export scheme to VisibleExecutable
and click the Save button.

3) Right-click the ADIF export scheme and select Create ADIF Scheme Details Using the Jira
Export Assistant. The Jira Export Assistant opens. The Jira Export Assistant has two tabs.
The Map Primary Alfabet Report Columns to Jira Issue Fields tab must first be defined in order
to trigger the primary report and fill the dataset in the editor with the scalar Jira issue fields that
require one single value. Then the Map Secondary Alfabet Report Columns to Jira Issue Fields
tab can be defined to specify the JIRA issue fields that may require more than one value (arrays).
For details about configuring the required reports, see the section Configuring the Primary and
Secondary Reports.

4) In the Map Primary Alfabet Report Columns to Jira Issue Fields tab, specify the following:

• Enter Export Entry Name: To create a new export entry, enter the name of the entry defined
for the ADIF export scheme.

Alternatively, to edit an existing export entry, select the export entry in the Select
Export Entry to Edit field that you want to edit. The assistant fields will be updated
with the existing definition. Click the Edit button to edit the fields described below.

• Data Connection: Select the relevant data connection to use to connect to the Jira instance.

• JIRA Project for Schema Retrieval: Select a representative project to retrieve issue schema.
This project does not have to be the project that the issue is to be sent to. All the projects
available in the Jira instance targeted by the connection will be displayed.

• JIRA Issue Type for Schema Retrieval: Select a representative issue type to retrieve issues.

You must select a project and an issue type for which at least one issue can be re-
trieved and that has a Jira issue structure that is representative for the targeted ex-
port. The mapping table will be pre-populated with the fields available for the found
issue(s). Any fields that are not returned based on the schema retrieval can be indi-
vidually added. If an issue type is selected for which no issue exists in the selected
project, the issue fields cannot be retrieved, and the dataset will not be populated.
An error message will be displayed in this case.

• Primary Alfabet Report: Specify the primary configured report to capture scalar Jira issues
fields with a single value. All reports assigned to the report category defined for the selected

data connection in the XML object JIRAIntegrationConfig will be displayed in the drop-

down list.

• Display Option for Alfabet Report Properties: Select one of the following to determine the
sorting of the data displayed in the dataset:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 149

• Sort Report Columns as Defined in Report: The column names in the configured
report are displayed instead of the object class property names. The sort order is
identical to the order of columns in the configured report.

• Sort Report Columns with Lexicographic Sorting: The column names in the
configured report are displayed instead of the object class property names. The sort
order is alphanumeric.

• Sort Property Columns as Defined in Report: The object class properties are
displayed as <ObjectClassName>.<PropertyName>. The sort order is identical to the
order of columns in the configured report.

• Sort Property Columns with Lexicographic Sorting: The object class properties are
displayed as <ObjectClassName>.<PropertyName>. The sort order is alphanumeric.

5) Click the Save Temporary Entry button. The Map Jira Issue Fields to Report Columns section
displays all Jira issue fields found via the export entry definition. To add additional Jira issue fields,
click the Add More Fields button and select the relevant fields in the JIRA Fields selector. Click
OK to add the fields to the dataset.

• Jira Issue Field ID: Displays the ID of the Jira issue field.

• Jira Issue Field Name: Displays the name of the Jira issue field. The dataset indicates which
Jira fields are mandatory to create an issue as well as to update an issue. All fields that are
mandatory are displayed in red

• Jira Issue Field Type: Displays the type of the Jira issue field.

• *C : Displays an M for mandatory the export if the Report Column Name field must be mapped
in order to create an issue in Jira.

• *U : Displays an M for mandatory the export if the Report Column Name field must be mapped
in order to update an issue in Jira.

• Report Column Name: Select the Alfabet property that the Jira issue field shall be mapped
to. Some rows can only be specified after the primary report has been executed.

Please note the following regarding the Status issue field in Jira:

• Jira issue fields may not be updated if the Status value cannot be correctly
set for the Jira issue.

• In order to create an issue in Jira based on an Alfabet object, the new issue
must either be assigned the initial status permissible for the issue type or the
status that follows the initial status. Please note the following:

• If the Alfabet status is not the same as the initial Jira status, the
system will assess whether a status transition is possible between the
two status values.

• If the status transition is not possible, the new issue will be deleted.

• If the status transition is possible, the issue will be created and the
issues fields that may be updated in the current status of the Alfabet
object before the status transitions.

• The system then checks whether the current Jira status has a
transition to itself. If the status transition is possible, the transition will

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 150

be performed and the issues fields that may be updated in the current
Jira issue will be updated.

• In order to update an issue in Jira based on an Alfabet object, the system
checks whether the Alfabet status is the same as the Jira status. Please note
the following:

• If the Alfabet status is not the same as the Jira status, the system will
assess whether a status transition is possible between the two status
values.

• If the status transition is not possible, an error message will be
displayed and the update of the issue will be skipped.

• If the status transition is possible, the update will be performed for the
issues fields that may be updated in the current status of the Alfabet
object before the status transitions.

• The system then checks whether the current Jira status has a
transition to itself. If the status transition is possible, the transition will
be performed and the issues fields that may be updated in the current
Jira issue will be updated.

6) Click the Save Temporary Entry button. A message will be displayed if the export entry has been
saved.

7) Go to the Map Secondary Alfabet Report Columns to Jira Issues Fields tab, specify the
following to specify the mapping for multi-valued attributes that require more than one value
(arrays):

• Enter Export Entry Name: Displays the name of the export entry selected in the tab or the
name entered for a new entry.

• Secondary Alfabet Reports Master Set : Specify the secondary configured reports to
capture multi-value attributes. All reports assigned to the report category defined for the

selected data connection in the XML object JIRAIntegrationConfig will be displayed in the

drop-down list.

Alternatively, to edit the existing definition based on one or more secondary re-
ports, select the secondary reports in the Select Secondary Report to Define
Mapping field that you want to edit. The assistant fields will be updated with the
existing definition. Click the Edit button to edit the fields described below.

• Secondary Report to Defined Mapping: If necessary, select additional secondary reports to
execute to find multi-valued attributes.

• Display Option for Alfabet Report Properties: Select one of the following to determine the
sorting of the data displayed in the dataset:

• Sort Report Columns as Defined in Report: The column names in the configured
report are displayed instead of the object class property names. The sort order is
identical to the order of columns in the configured report.

• Sort Report Columns with Lexicographic Sorting: The column names in the
configured report are displayed instead of the object class property names. The sort
order is alphanumeric.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 151

• Sort Property Columns as Defined in Report: The object class properties are
displayed as <ObjectClassName>.<PropertyName>. The sort order is identical to the
order of columns in the configured report.

• Sort Property Columns with Lexicographic Sorting: The object class properties are
displayed as <ObjectClassName>.<PropertyName>. The sort order is alphanumeric.

8) Click the Save Temporary Entry button. The Map Secondary Alfabet Report Columns to JIRA
Issue Fields section displays all Jira issue fields found via the secondary reports.

• Jira Issue Field Name: Displays the name of the Jira issue field. The dataset indicates which
Jira fields are mandatory to create an issue as well as to update an issue. All fields that are
mandatory are displayed in red

• Jira Issue Field Type: Displays the type of the Jira issue field.

• *C : Displays an M for mandatory the export if the Report Column Name field must be mapped
in order to create an issue in Jira.

• *U : Displays an M for mandatory the export if the Report Column Name field must be mapped
in order to update an issue in Jira.

• Report Column Name: Select the Alfabet property that the Jira issue field shall be mapped
to. Some rows can only be specified after the secondary report has been executed.

9) Click the Save Temporary Entry button.

10) Click OK to close the editor. The ADIF export scheme can be executed via a batch job and the
relevant Alfabet objects such as demands, features, etc. will be exported as issues to Jira.

Configuring the Event Templates to Trigger the ADIF Export Schemes for Synchroni-
zation

Once the mapping has been completed, event templates must be configured to trigger the ADIF export
schemes associated with the relevant configured reports. The configured report associated with the ADIF
export scheme should return a set of objects that can be mapped to Jira Issues. The set of objects returned
by the event template must be a subset of the objects returned by the primary report of the ADIF job refer-
enced by the event template. Only the returned objects that are common to both the event template and
the primary report will be exported to Jira. The execution of the event template may be parameterized as
described below in order to limit the set of returned objects.

The event templates can be assigned to a semantic Jira connection in the Event Templates for Synchro-
nization field in the Jira Connection for Project-Based Integration and Jira Connection for Architec-
ture-Based Integration editors. The event template will be triggered when the users execute the Syn-
chronize with Project Data functionality in the relevant object profiles.

Please note the following regarding the configuration of event templates for the ADIF export schemes con-
figured for Jira integration:

• A parameter is not required by the reports specified for the ADIF export scheme. If a parameter is
specified, it will be ignored.

• The following attributes must be defined for the event template:

• ADIF Scheme: Select the ADIF export scheme that the event template shall trigger.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 152

• Values for Variables via Query : Specify a query to limit the objects returned by the report.
For example, if the user is synchronizing an application to a Jira project version, only the
features relevant to the application that is being synchronized will be exported to Jira. Please
note that the REFSTR must have the name ObjectRef as shown in the example query:

SELECT NULL; REFSTRA AS ’ObjectRef'

FROM FEATURE

WHERE OBJECT = @BASE

For the import from Jira, the event template should return a set of objects that are associated
with the relevant Jira structure objects.

For information about the configuration of event templates, see the chapter Configuring Events reference
manual Configuring Alfabet with Alfabet Expand. A user with an administrative user profile may review the
success of the triggered events in the Event Administration Functionality. For more information, see the
chapter Managing Events in the reference manual User and Solution Administration.

Configuring Semantic Connections to Link and Synchronize Jira
Projects with Alfabet Objects

The Jira Connection view in the Integration Solutions Configuration functionality in the Alfabet user
interface allows you to create one or more semantic definitions for all relevant Jira® connections that have

been configured in the XML object JIRAIntegrationConfig in order to export Alfabet data to Jira. A Jira

connection definition should be created for each data connection configured in the XML object JIRAInte-
grationConfig. You can configure multiple semantic data connections for each data connection config-

ured in the XML element DataConnection in the XML object JIRAIntegrationConfig.

A semantic Jira connection allows you to map the Alfabet object classes to the Jira project structure and
to specify the stereotypes and possible a configured report that shall return the set of Alfabet objects that
may be integrated with Jira. For each Jira connection you create, you must specify the integration pattern
to map objects in the Alfabet object hierarchy to the Jira project, project version, or project component.
You can choose an architecture-based integration pattern or a project-based integration pattern for the
mapping.

Whether your enterprise chooses the architecture-based or project-based integration will depend on your
methodology of using Jira. If your company associates demands with products in Alfabet, the ICT object
integration pattern may be more relevant, but if demands are associated with projects, a project hierarchy
integration pattern may be more suitable.

The following are examples of potential use cases for the integration with Jira. The first example
is based on a project-based integration pattern and the second is based on an architecture-
based integration pattern:

• The IT department of a banking enterprise documents bugs and change requests for their
trading software in Jira and captures their operational plans in Alfabet. In this case, for
example, the Jira issues could be imported to Alfabet as features that are planned for
applications that are owned and fiscally managed via ICT objects. The following mapping
schema provides an example of how Jira projects could be mapped to a project structure
in Alfabet:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 153

Alfabet Class Jira Class

ICT Object Project

Application ProjectVersion

Local Component ProjectComponent

Feature Issue

• A banking enterprise captures demands in order to plan the modification of the bank's
trading capabilities. The demands are assigned to projects in Alfabet. The Project
stereotype "Program" in Alfabet could be mapped to Projects in the Jira instance. The
demands will be exported as issues to Jira in order to implement the projects and
operationalize the needed changes. The subordinate project stereotype Project could be
mapped to the Jira ProjectVersion and the project stereotype Project Step would be
mapped to the Jira ProjectComponent. The following mapping schema provides an
example of how Jira projects could be mapped to an ICT object hierarchy in Alfabet:

Alfabet Class Jira Class

Project Stereotype 1 Project

Project Stereotype 2 ProjectVersion

Project Stereotype 3 ProjectComponent

Demand Issue

The following integration patterns may be specified for a project-based approach:

Integration Type Jira Project Jira Project
Version

Jira Project Com-
ponent

Jira Projects, Project Versions, and Project
Components

Project Stereo-
type 1

Project Stereo-
type 2

Project Stereotype
3

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 154

Integration Type Jira Project Jira Project
Version

Jira Project Com-
ponent

Jira Projects and Project Versions Project Stereo-
type 1

Project Stereo-
type 2

Jira Project and Project Components Project Stereo-
type 1

 Project Stereotype
3

Jira Projects Project Stereo-
type 1

Jira Project Versions Project Stereo-
type 2

Jira Project Versions and Project Compo-
nents

 Project Stereo-
type 2

Project Stereotype
3

Jira Project Components Project Stereotype
3

The following integration patterns may be specified for an architecture-based approach:

Integration Type Jira Project Jira Project Version Jira Project Compo-
nent

Jira Projects, Project Versions, and
Project Components

ICT Object (or
stereotype)

Application (or stereo-
type)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Component (or stere-
otype)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Jira Projects and Project Versions ICT Object (or
stereotype)

Application (or stereo-
type)

 ICT Object (or
stereotype)

Component (or stere-
otype)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 155

Integration Type Jira Project Jira Project Version Jira Project Compo-
nent

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Jira Projects ICT Object (or
stereotype)

Project Versions Application (or stereo-
type)

 Component (or stere-
otype)

 Standard Platform (or
stereotype)

Project Versions and Project Com-
ponents

ICT Object (or
stereotype)

Application (or stereo-
type)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Component (or stere-
otype)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Jira Projects, Project Versions, and
Project Components

 Application (or stereo-
type)

Local Component (or
stereotype)

 Component (or stere-
otype)

Local Component (or
stereotype)

 Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Project Components Component (or stere-
otype)

Local Component (or
stereotype)

 Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 156

You may specify any level in the Jira project structure to begin the integration with. For example, you could
choose to map Alfabet applications to Jira project versions and the application's local components to Jira
project components. Depending on the integration pattern specified for the relevant data connection, us-
ers can navigate to the object profile of the relevant ICT object, project, application, component, standard
platform, etc. in the Alfabet user interface and link the object to the relevant Jira project/project ver-
sion/project component via the Link to Jira Project option in the Action menu. The Link to Jira Project
option will only be available for those objects that are permissible for Jira integration via the stereotype
definition of configured report.

Once the Alfabet object has been linked with the Jira project in the user interface, users can regularly syn-
chronize the object with the Jira project structure via the Synchronize with Jira Project Structure op-
tion. The project version and project component will only be synchronized if Alfabet objects exist for the
relevant object classes/object class stereotypes. Furthermore, the Alfabet objects will be synchronized
with the project's existing project version and component only if the properties specified for the mapping
have the same value. For example, if the integration pattern specifies that applications are to be mapped to
Jira project versions based on the Alfabet property Name, then all applications with the same name that are
owned by the selected ICT object will be mapped to the same Jira project version.

The following information is available:

• Creating a Jira Connection for Project-Based Integration

• Creating a Jira Connection for Architecture-Based Integration

Creating a Jira Connection for Project-Based Integration

The Jira Connection view in the Integration Solutions Configuration functionality allows you to define
Jira connections that map project stereotypes in Alfabet that are relevant for Jira integration. You can
specify an integration mapping of projects in the project hierarchy configured for your Alfabet solution to
the Jira project, project version, and project component. For example, the project stereotype Agile Release
Train could be mapped to Jira projects and the project stereotype Program Increment could be mapped to
the Jira project version.

You can configure multiple semantic Jira connections for each data connection configured in the XML ele-

ment DataConnection in the XML object JiraIntegrationConfig. A semantic Jira connection should

be configured for each level in the Jira project structure that the integration can begin with.

The following integration patterns may be specified for a project-based approach:

Integration Type Jira Project Jira Project
Version

Jira Project Com-
ponent

Jira Projects, Project Versions, and Project
Components

Project Stereo-
type 1

Project Stereo-
type 2

Project Stereotype
3

Jira Projects and Project Versions Project Stereo-
type 1

Project Stereo-
type 2

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 157

Integration Type Jira Project Jira Project
Version

Jira Project Com-
ponent

Jira Project and Project Components Project Stereo-
type 1

 Project Stereotype
3

Jira Projects Project Stereo-
type 1

Jira Project Versions Project Stereo-
type 2

Jira Project Versions and Project Compo-
nents

 Project Stereo-
type 2

Project Stereotype
3

Jira Project Components Project Stereotype
3

To configure a Jira connection for a project-based integration:

1) Go to the Integration Solutions Configuration functionality and click the Jira Connection node
in the Integration Solutions Configuration explorer.

2) In the view, click New > Create Jira for Project-Based Integration.

3) In the Jira Connection for Project-Based Integrations editor, define the following fields as
needed.

Basic Data tab:

• ID: Alfabet assigns a unique identification number to each Jira data connection. This number
cannot be edited.

• Name: Enter a unique name for the Jira connection. The name should help the user
synchronizing the Jira instance that will be targeted by the connection.

• Description: Enter a meaningful description that will clarify the purpose of the Jira
connection.

Authorized Access tab:

• Authorized User: Click the Search icon to assign an authorized user to the selected Jira
connection. The authorized user will have Read/Write access permissions for the object and is
responsible for the maintenance of the object.

• Authorized User Groups: Select one or more checkboxes to assign Read/Write access
permissions to all users in the selected user group(s).

Connection tab:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 158

Please note the following about the fields in the Connection tab:

• The integration pattern that you select in the Integration Type field will
determine which fields must be defined in the Connection tab. Please note that if
you specify the integration pattern that starts with either a project version or
project component, the Property to Save Jira Project ID, Property to Save Jira
Project Name, and Property to Save Jira Project Key must be specified for the
ascendant Jira project. The Property to Save Jira Project ID, Property to Save
Jira Project Name, and Property to Save Jira Project Key fields are filled with
all custom properties as well as the standard properties of the type String
specified in the XML element
AlfabetClassMappingStandardPropertySettings in the XML object

JiraIntegrationConfig.

• The Alfabet Class Aligned with Jira Project field will always display the object
class Project. You should define the Stereotype Filter field in order to
determine which project stereotype may be integrated with Jira. All available
project stereotypes availed in the Stereotype Filter field will be selected if no
project stereotype is selected. Please note that the project stereotypes available
in the Stereotype Filter fields will be determined by the configuration of project

stereotype hierarchies in the XML object ProjectManager. For more

information, see the section Creating Project Stereotypes for the Project
Hierarchy in the reference manual Configuring Alfabet with Alfabet Expand.

• The definition of the Stereotype Filter field and the Object Filter Report field
determine the Alfabet project's that are allowed to integrate with Jira projects.
The Link to Jira Project editor option will be available in the Action menu in the
object profiles of the projects found via the definition of the Stereotype Filter
field or the Object Filter Report field. For more information about configuring the
reports that may be selected in the Object Filter Report field, see the section
Configuring Object Filter Reports.

• Data Connection: Select the relevant data connection configured in the XML element

DataConnection in the XML object JiraIntegrationConfig. This data connection will be

established when the user selects the integration pattern defined below via the Action > Link
to Jira Project option in the object profile for the relevant project stereotype.

• Project Filter: Select one of the Jira project filters defined in the XML object

JiraIntegrationConfig. The filters limit the number of Jira projects that users can select

for the integration in the editor that opens when the Link to Jira Project option is executed
for a project in Alfabet. For example, a filter could specify that only Jira projects with a project
type equal to "Software" or "Business" are returned.

• Project Filter Description: Displays information about the filter selected in the Select
Project Filter field.

• Integration Type: Select the level in the Jira project structure to begin the integration with.
The project stereotypes displayed in the Integration Pattern field will be determined based
on the Integration Type field. You can select the specific Alfabet project stereotype to map
to the relevant level in the Jira project structure in the respective Stereotype Filter field.

• Integration Pattern: Select the architecture pattern to map Alfabet projects to the Jira
project structure selected in the Integration Type field.

• Alfabet Class Aligned with Jira Project: Displays the object class Project.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 159

• Stereotype Filter: Select an Alfabet project stereotype to map to Jira projects. All available
project stereotypes will be selected if no project stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira objects. This is an optional report that allows you to limit the projects
available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira projects.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira projects.

• Property to Save Jira Project Key: Select the Alfabet class property to be used to capture
the Key property for Jira projects.

• Alfabet Class Aligned with Jira Project Version: Displays the object class Project.

• Stereotype Filter: Select an Alfabet project stereotype to map to Jira project versions. All
available project stereotypes will be selected if no project stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira project versions. This is an optional report that allows you to limit the
project versions available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira project versions.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira project versions.

• Property to Create Jira Version on Synchronization: Select the Alfabet class property to
be used to capture the Name property when creating new Jira project versions.

• Alfabet Class Aligned with Jira Project Component: Displays the object class Project.

• Stereotype Filter: Select an Alfabet project stereotype to map to Jira project components.
All available project stereotypes will be selected if no project stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira project components. This is an optional report that allows you to limit the
project components available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira project components.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira project components.

• Event Templates for the Synchronization: Select the Alfabet event templates that shall call
the relevant ADIF import/export schemes that are to be triggered when synchronizing an
Alfabet object with the linked Jira object's data. For details about the configuration of event
templates necessary to export Alfabet data to Jira, see the section Configuring the Event
Templates to Trigger the ADIF Export Schemes for Synchronization.

• Event Template Sequence: Reorder the sequence that the selected Alfabet event templates
are triggered. To do so, click an event template in the window and click the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 160

4) Repeat this for all necessary configured DataConnection elements in the XML object

JiraIntegrationConfig.

Creating a Jira Connection for Architecture-Based Integration

The Jira Connection view in the Integration Solutions Configuration functionality allows you to define
Jira connections that specify the mapping of the object classes or their object class stereotypes in Alfabet
that are relevant for Jira integration. You can specify an integration mapping based on predefined archi-
tecture object hierarchies in Alfabet to map to the Jira project, project version, and project component. A
semantic definition should be configured for each level in the Jira project structure that the integration can
begin with.

The following integration patterns may be specified for an architecture-based approach:

Integration Type Jira Project Jira Project Version Jira Project Compo-
nent

Jira Projects, Project Versions, and
Project Components

ICT Object (or
stereotype)

Application (or stereo-
type)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Component (or stere-
otype)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Jira Projects and Project Versions ICT Object (or
stereotype)

Application (or stereo-
type)

 ICT Object (or
stereotype)

Component (or stere-
otype)

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Jira Projects ICT Object (or
stereotype)

Project Versions Application (or stereo-
type)

 Component (or stere-
otype)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 161

Integration Type Jira Project Jira Project Version Jira Project Compo-
nent

 Standard Platform (or
stereotype)

Project Versions and Project Com-
ponents

ICT Object (or
stereotype)

Application (or stereo-
type)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Component (or stere-
otype)

Local Component (or
stereotype)

 ICT Object (or
stereotype)

Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Jira Projects, Project Versions, and
Project Components

 Application (or stereo-
type)

Local Component (or
stereotype)

 Component (or stere-
otype)

Local Component (or
stereotype)

 Standard Platform (or
stereotype)

Platform Element (or
stereotype)

Project Components Component (or stere-
otype)

Local Component (or
stereotype)

 Standard Platform (or
stereotype)

Platform Element (or
stereotype)

You can configure multiple semantic data connections for each data connection configured in the XML ele-

ment DataConnection in the XML object JiraIntegrationConfig.

To configure a Jira database connection for an architecture-based integration:

1) Go to the Integration Solutions Configuration functionality and click the Jira Connection node
in the Integration Solutions Configuration explorer.

2) In the view, click New > Create Jira for Architecture-Based Integration.

3) In the Jira Connection for Architecture-Based Integrations editor, define the following fields
as needed.

Basic Data tab:

• ID: Alfabet assigns a unique identification number to each Jira data connection. This number
cannot be edited.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 162

• Name: Enter a unique name for the Jira connection. The name should help the user
synchronizing the Jira instance that will be targeted by the connection.

• Description: Enter a meaningful description that will clarify the purpose of the Jira
connection.

Authorized Access tab:

• Authorized User: Click the Search icon to assign an authorized user to the selected Jira
connection. The authorized user will have Read/Write access permissions for the object and is
responsible for the maintenance of the object.

• Authorized User Groups: Select one or more checkboxes to assign Read/Write access
permissions to all users in the selected user group(s).

Connection tab:

Please note the following about the fields in the Connection tab:

• The integration pattern that you select in the Integration Type field will
determine which fields must be defined in the Connection tab. Please note that if
you specify the integration pattern that starts with either a project version or
project component, the Property to Save Jira Project ID, Property to Save Jira
Project Name, and Property to Save Jira Project Key must be specified for the
ascendant Jira project. The Property to Save Jira Project ID, Property to Save
Jira Project Name, and Property to Save Jira Project Key fields are filled with
the all custom properties as well as the standard properties of the type String
specified in the XML element
AlfabetClassMappingStandardPropertySettings in the XML object

JiraIntegrationConfig.

• You may define the Stereotype Filter field in order to determine which object
class stereotype may be integrated with Jira. All available object class
stereotypes available in the Stereotype Filter field will be selected if no object
class stereotype is selected.

• The definition of the Stereotype Filter field and the Object Filter Report field
determine the Alfabet object's that are allowed to integrate with Jira projects. The
Link to Jira Project editor option will be available in the Action menu in the
object profiles of the objects found via the definition of the Stereotype Filter
field or the Object Filter Report field. For more information about configuring the
reports that may be selected in the Object Filter Report field, see the section
Configuring Object Filter Reports.

• Alfabet Class Aligned with Jira Project: Specify the Alfabet class in the
specified integration pattern that is matched to Jira projects. Whether this field
can be defined or not will depend the selection in the Integration Type field.

• Data Connection: Select the relevant data connection configured in the XML element

DataConnection in the XML object JiraIntegrationConfig. This data connection will be

established when the user selects the integration pattern defined below via the Action > Link
to Jira Project option in the object profile for the relevant object.

• Project Filter: Select one of the Jira project filters defined in the XML object

JiraIntegrationConfig. The filters limit the number of Jira projects that users can select

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 163

for the integration in the editor that opens when the Link to Jira Project option is executed
for an object. For example, a filter could specify that only Jira projects with a project type
equal to "Software" or "Business" are returned.

• Project Filter Description: Displays information about the filter selected in the Select
Project Filter field.

• Integration Type: Select the level in the Jira project structure to begin the integration with.
The object classes displayed in the Integration Pattern field will be determined based on the
Integration Type field. You can select the specific object stereotype to map to the relevant
level in the Jira project structure in the respective Stereotype Filter field.

• Integration Pattern: Select the architecture pattern to map Alfabet objects to the Jira
project structure selected in the Integration Type field.

• Alfabet Class Aligned with Jira Project: Displays the Alfabet class in the specified
integration pattern that is mapped to Jira projects. Whether this field can be defined or not
will depend on the selection in the Integration Type field.

• Stereotype Filter: Select an object stereotype to map to Jira projects. All available object
class stereotypes will be selected if no object class stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira projects. This is an optional report that allows you to limit the objects
available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira projects.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira projects.

• Property to Save Jira Project Key: Select the Alfabet class property to be used to capture
the Key property for Jira projects.

• Alfabet Class Aligned with Jira Project Version: Displays the Alfabet class in the specified
integration pattern that is mapped to Jira project versions. Whether this field can be defined
or not will depend on the selection in the Integration Type field.

• Stereotype Filter: Select an object class stereotype to map to Jira project versions. All
available object class stereotypes will be selected if no object class stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira project versions. This is an optional report that allows you to limit the
objects available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira project versions.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira project versions.

• Property to Create Jira Version on Synchronization: Select the Alfabet class property to
be used to capture the Name property when creating new Jira project versions.

• Alfabet Class Aligned with Jira Project Component: Displays the Alfabet class in the
specified integration pattern that is mapped to Jira project components. Whether this field
can be defined or not will depend on the selection in the Integration Type field.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 164

• Stereotype Filter: Select an object class stereotype to map to Jira project components. All
available object class stereotypes will be selected if no object class stereotype is selected.

• Object Filter Report: Select the Alfabet report that returns the relevant objects that may be
integrated with Jira project components. This is an optional report that allows you to limit the
objects available to be selected for Jira integration.

• Property to Save Jira Project ID: Select the Alfabet class property to be used to capture the
ID property for Jira project components.

• Property to Save Jira Project Name: Select the Alfabet class property to be used to capture
the Name property for Jira project components.

• Event Templates for the Synchronization: Select the Alfabet event templates that shall call
the relevant ADIF import/export schemes that are to be triggered when synchronizing an
Alfabet object with the linked Jira object's data. For details about the configuration of event
templates necessary to export Alfabet data to Jira, see the section Configuring the Event
Templates to Trigger the ADIF Export Schemes for Synchronization.

• Event Template Sequence: Reorder the sequence that the selected Alfabet event templates
are triggered. To do so, click an event template in the window and click the

4) Repeat this for all necessary configured Connection elements in the XML object

JiraIntegrationConfig.

Linking to and Synchronizing the Jira Project

Once an integration pattern has been configured in the Integration Solutions Configuration functional-
ity, you can link the relevant Alfabet object to a Jira project. Depending on the configuration of the integra-
tion pattern for the semantic Jira connection, the object that may be linked may be a project stereotype,
ICT object, application, component, local component, standard platform, or standard platform element. The
Link to Jira Project option will be available in the object profile for all objects that are specified via the ste-
reotype definition or configured report definition of a semantic Jira connection.

The Alfabet Server must be running and able to connect to the Internet.

To link to a Jira project:

1) In the Alfabet user interface, navigate to the object profile of the relevant object that has been
specified via a semantic Jira connection.

2) In the toolbar, click Action > Link to Jira Project. Please note that if you are linking an Alfabet
object that shall be integrated with a Jira project version, you will see Action > Link to Jira
Project Version and if you are linking an Alfabet object that shall be integrated with a Jira project
component, you will see Action > Link to Jira Project Component. The Link to Jira Project
editor opens.

3) In the Integration Connection field, select the relevant connection to use to connect to Jira. All
Jira projects meeting the conditions specified for the project filters specified for the selected
integration connection will be displayed. The Jira projects can be further limited by specifying
criteria in the Search Pattern field.

4) In the dataset, select the relevant Jira project/Jira project version/Jira project component that
you want to link the selected object to and click OK. The Link to Jira Project action creates a new

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 165

record in the database table for the IntegrationConnectionUsage class. The table maps the
relationship between the selected integration connection, the ICT object/project in Alfabet, and
the identifier of the Jira project.

5) To synchronize the Jira project structure (the relevant Jira project version and Jira project
component), click Action > Synchronize with Jira Project Structure. The synchronization
creates the relevant project versions and project components based on the integration pattern
specified for the data connection you are using. For example, if the Alfabet object to start the
integration with is an application and the application has been linked to a Jira project version, the
application's local components will be synchronized with the Jira project components of the Jira
project version.

The project version and project component will only be synchronized if Alfabet objects exist for the
relevant object classes/object class stereotypes. For example: the integration pattern specifies the
mapping of the object class Application to Jira project versions and the object class stereotype
Technical Component of the class Local Component to the Jira project component. If the applica-
tion GL Trade Products is linked to a Jira project version, then upon synchronization all local com-
ponents assigned to the application would be created as Jira project components for the Jira pro-
ject version. However, if no technical components have been defined for any of the applications,
then no Jira project components will be created for the Alfabet local component.

Furthermore, the Alfabet objects will be synchronized with a project's existing project version and
component only if the properties specified for the mapping have the same value. For example, if
the integration pattern specifies that ICT objects are to be mapped to Jira projects based on the
Alfabet property Name, then all applications with the same name that are owned by the selected
Alfabet ICT object will be mapped to the same Jira project version.

6) To trigger the event templates specified for synchronization for the relevant Jira integration
connection, click Action > Synchronize with Jira Project Data. The event templates must be
configured to trigger the ADIF export schemes associated with the relevant configured reports.
The configured report associated with the ADIF export scheme should return a set of objects that
can be mapped to Jira Issues.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 166

Chapter 14: Configuring Interoperability with Microsoft Project

Interoperability with Microsoft® Project allows your enterprise to synchronize strategic project portfolio
planning with operational project management and evaluate all of the projects in the enterprise in the con-
text of corporate strategy and strategic investment. The capability allows the enterprise to export projects
planned in Alfabet to Microsoft Project as well as to import projects managed in Microsoft Project to
Alfabet.

The configuration of the project management capability including project stereotypes, release
statuses, wizards, etc. should be completed before configuring integration of Alfabet projects
with Microsoft projects. For more information, see the section Configuring the Project Manage-
ment Capability in the reference manual Configuring Alfabet with Alfabet Expand.

The following is required to import MS projects to Alfabet, synchronize imported Alfabet projects with their
updated projects in MS Project, or export Alfabet projects to MS Project:

• Specify data connections and import patterns in the XML object MicrosoftProjectPlanConfig.

• Ensure that a wizard has been created and is assigned to the class setting for the class Project. This
is mandatory in order to import projects via MS Project. An additional step will be prepended to the
first wizard step that allows the import to be triggered in order to create the new project in Alfabet.

• Ensure that release status definitions have been created for the class

MicrosoftProjectPlan_Mappings in the XML object ReleaseStatusDefs.

• Ensure that a view is available to the relevant user profiles that provides the functionality to import
MS projects, synchronize Alfabet projects with updated MS projects, and export Alfabet projects to
Microsoft Server. For more information about configuring user profiles, see the section Configuring
User Profiles for the User Community in the reference manual Configuring Alfabet with Alfabet
Expand. These views include the following:

• Capture Projects functionalities (PRJ_CaptureProjects and PRJ_CaptureProjects_Ex)

• Projects page views for project groups and buckets (PRJG_Projects and BKT_Projects)

• Project object profile (PRJ_ObjectView) or a project stereotype object profile

• Specify the MS project methodology to use for the import/export/synchronization of MS projects via
the MS Project Methodology node in the Integration Solutions Configuration functionality in the
user interface. For more information, see the section Specifying MS Project Methodologies for
Interoperability with Microsoft Project in the reference manual Configuring Evaluation and
Reference Data in Alfabet.

Ensure that the file extensions.mpp and.mpt are not listed in the blacklist defined in the XML ob-
ject FileExtensionLists. If a whitelist is specified the XML object FileExtensionLists, then
the file extensions.mpp and.mpt must be included as permissible file extensions. For more infor-
mation, see the section Specifying the Permissible File Extensions for Uploading/Downloading
Files in the reference manual Configuring Alfabet with Alfabet Expand.

The following information is available:

• Configuring the Connections for Interoperability with Microsoft Project

• Specifying a Wizard for Interoperability with Microsoft Project

• Specifying Release Status for Interoperability with Microsoft Project

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 167

Configuring the Connections for Interoperability with Microsoft
Project

Specify data connections and import patterns in the XML object MicrosoftProjectPlanConfig. These

are required to define the semantic connections for integration with Microsoft Project.

The XML object MicrosoftProjectPlanConfig allows a solution designer to specify data connections

and the data mapping required for the import and export of Alfabet projects to/from Microsoft Project. Fur-
thermore, the options for import matching rules require for the import of Microsoft projects/project tasks
as skill requests to Alfabet can be defined. Please note the following:

• You can specify that a connection is created to one or more Microsoft Project Server instances in
order to import data from the server instance. Alternatively, data can be imported to Alfabet via one
or more MPP files. Please note that the connection to the Microsoft Project Server only supports the
import of Microsoft projects and project tasks to Alfabet. Export from Alfabet to the Microsoft
Project Server is not supported.

• You must specify the mapping between Alfabet property types and Microsoft project data types to
import/export data from either a Microsoft Project Server instance or an MPP file.

• You must specify import matching rules that describe how the resource data captured in Microsoft
Project shall be used to find the skill, organization, and person referenced by a skill request created
in the context of importing a Microsoft project task. You must define at least one property or
matching pattern for each class. The following is possible to find the relevant skill, organization, and
person in the Alfabet database based on the resource data associated with the project task imported
to Alfabet:

• Specify object class properties for the classes Skill (mandatory), Person (optional), and
OrgaUnit (optional) that may be used to search for skills, persons, and organizations in the
Alfabet database.

The Name property is defined for the class Skill. A project task is imported as a
skill request to Alfabet. The project task has a resource Java Programming. Upon
import, the system will search for a skill with the name JAVA Programming. If an
existing skill is found, the new skill request will reference the skill Java Program-
ming.

• Specify matching patterns that consist of multiple properties and a delimiter for the classes
Skill (mandatory), Person (optional), and OrgaUnit (optional) that may be used to search
for skills, persons, and organizations in the Alfabet database.

A matching pattern consisting of the properties Name and ID defined for the class
Skill and the underscore (_) delimiter. A project task is imported as a skill re-
quest to Alfabet. The project task has a resource Java Programming_123. Upon im-
port, the system will search for a skill with the name Java Programming and the ID
123. If an existing skill is found with a matching name and ID, the new skill request
will reference the skill Java Programming. Please note however, if the resource was
named Java Programming/123, no skill would be found because the slash delimiter
is used in the resource name and not an underscore.

Please note the following regarding the implementation of import matching rules:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 168

• One or more properties and matching patterns can be selected by the user
defining the methodology in the MS Project Methodology editor in the
Integration Solutions Configuration functionality:

• Criteria such as Contains, Starts With, etc. can be defined for the selected
properties and matching patterns by the user defining the methodology in the MS
Project Methodology editor in the Integration Solutions Configuration
functionality:

• The first relevant skill, organization, or person found to match the criteria in the
Alfabet database will be used.

• Every skill request that is imported to Alfabet requires a reference to a skill. This is
mandatory. The reference to a person or organization is optional for a skill
request. A default skill can be selected by the user importing the Microsoft project
if no skills are found by import matching rules.

Please note that if changes are made to the XML object MicrosoftProjectPlanConfig after
the MS project methodologies have been created in the MS Project Methodology view in the In-
tegration Solutions Configuration functionality, you should review the import and export map-
ping rules of the MS project methodologies and make adjustments as needed. Changes made to
the XML object MicrosoftProjectPlanConfig will not be automatically updated to existing MS
project methodologies. For more information about configuring MS project methodologies, see
the section Specifying MS Project Methodologies for Interoperability with Microsoft Project in the
reference manual Configuring Evaluation and Reference Data in Alfabet.

To define the XML object MicrosoftProjectPlanConfig:

1) In Alfabet Expand, go to the Presentation tab and expand the explorer nodes XML Objects >
IntegrationSolutions.

2) Right-click MicrosoftProjectPlanConfig and select Edit XML.... The XML object

MicrosoftProjectPlanConfig opens.

The XML object usually includes an example definition. In addition, a template is available
via the XML Template in the attribute grid of the XML object MicrosoftProjectPlan-
Config. The template can be copied to the XML object to avoid manually writing the
configuration. In this case, you would edit the XML elements described below. The fol-
lowing information describes a configuration from scratch.

3) If projects are to be imported from Microsoft Project Server (optional): Add an XML element
DataConnections to the root XML element MicrosoftProjectPlanConfig. For each
Microsoft® Project Server instance, add a child XML element DataConnections and specify the
following XML attributes:

• Name: The name of the connection to the Microsoft® Project Server. A unique name must be
specified for the connection. The name will be displayed in the MS Project Server
Connection field in the Project wizard that opens when the import via MS Project Server
option is triggered.

• IsActive: Enter "true" to activate interoperability with Microsoft® Project Server. One
Microsoft® Project Server may be active at any given time. If multiple connections are set to
IsActive = true, then the first active connection will be used.

• ServiceURL: Specify the URL to the Microsoft® Project Server instance.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 169

• ServiceUserName: Specify the username used to access the Microsoft® Project Server
instance.

• ServiceUserDomain: If required, define the domain name that shall be used as part of the
username for authentication at the proxy server

Please note that server variables read the value of the XML attribute at runtime from
the server alias configuration of the Alfabet Web Application when a connection to
the integration solution is established. For information about configuration the
server variables in the server alias, see Configuring Server Variables for Integration
and Interoperability Solutions.

• ServicePassword: Specify the password used to access the Microsoft® Project Server
instance.

• DBDataSource: Specify the database data source to access for the Microsoft® Project Server
instance.

• DBInitialCatalog: Enter the database catalog name to access for the Microsoft® Project
Server instance.

• DBSchema: Enter the database schema name to access for the Microsoft® Project Server
instance.

• DBUserName: Enter the database username to access for the Microsoft® Project Server
instance.

• DBPassword: Enter the database user password to access for the Microsoft® Project Server
instance.

4) Add an XML element DataTypeMappings to the root XML element
MicrosoftProjectPlanConfig. Add the XML attribute UnknownMPPTypeAsString and specify
"true" if data types not specified in an XML element DataType shall be imported to Alfabet from
Microsoft® Project with the data type String. Enter "false" if unknown data types shall not be
imported to Alfabet.

5) Create an XML element DataType for each Microsoft Project data type to be mapped to an Alfabet
data type when importing/exporting data. Specify the following XML attributes for each XML
element DataType:

• MPPType: Enter the Microsoft Project data type to match to the Alfabet data type specified in
the XML attribute ADIFType

• ADIFType: Enter the Alfabet data type to match to the Microsoft® Project data type specified
in the XML attribute MPPType.

Please note that an ADIF configuration is not required to import or export data from
Microsoft Project.

6) Add an XML element ResourcMatchOptions to the root XML element
MicrosoftProjectPlanConfig in order to define the import matching rules that can potentially
be used to match the resources from Microsoft® Project with skills, organizations or persons in
Alfabet when a skill request is created in Alfabet based on a project task in Microsoft Project. You
must define at least one property or matching pattern for each class. The specified properties and
matching patterns will be available for selection in the Import Matching Rules section in the MS
Project Methodology editor available in the Alfabet user interface and can be assigned to a

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 170

methodology as needed. Define the following child XML elements for the XML element
ResourcMatchOptions.

• Class: Create an XML element Class for each of the following classes: Skill, Person, and
OrgaUnit. Define the following XML attributes for each XML element Class:

• Name: Enter the technical name of the Alfabet class (for example: Skill, Person, and
OrgaUnit.) The technical name must be correctly spelled. The XML attribute Name may
not exceed 64 characters.

• Properties: Define a comma-separated list of the properties of the relevant Alfabet
class that may potentially be mapped to resources in Microsoft® Project.

• MatchPatterns: Create one or more Pattern XML elements to specify the patterns to use to
match properties not specified in the XML attribute Properties. For each XML element
Pattern, specify the following: take multiple properties in Alfabet and concatenate with
delimiter to match with strings in MS.

• Name: Enter the name of the matching rule. The XML attribute Name may not exceed 64
characters. Please note that if the names of matching patterns have more than 64
characters, errors may occur when specifying the MS project methodology.

• Properties: Specify the properties that shall make up the pattern to be used to find
for the skills (or persons or organizations) in the Alfabet database that match the
resource in MS project.

• Delimiter: Specify one or more delimiters used in resources. Only resources with the
specified delimiters qualify as resources for which matching skills can be found.

7) In the toolbar of Alfabet Expand, click the Save button to save your changes.

Specifying a Wizard for Interoperability with Microsoft Project

Please note that in order to import MPP files to Alfabet, a wizard must be configured and assigned to the
class setting for the class Project. This is mandatory in order to import projects via MS Project. An addi-
tional step will be prepended to the first wizard step that allows the import to be triggered in order to create
the new project in Alfabet. For the class setting, the Default Editor Type attribute must be set to Wizard
and the relevant wizard must be specified for the Wizard attribute.

When the user selects the Import Project from MS Project File or Import Project from MS Project
Server options in the relevant views, the relevant wizard will be automatically prepended with an additional
wizard step prompting the user to select the MPP file, the desired MS Project methodology, and the default
skill to be used for any resources in the MPP file that cannot be matched based on the matching rules pre-
sent in the MS Project methodology. Once the Next button is clicked in the prepended wizard step, the pro-
ject will be created, and the wizard will move to the configured first wizard step so that the new project can
be edited. For more information about the configuration of the project management capability as well as

the specification of project stereotypes via the XML object ProjectManager, see the section Configuring

the Project Management Capability in the reference manual Configuring Alfabet with Alfabet Expand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 171

Specifying Release Status for Interoperability with Microsoft Pro-
ject

Ensure that release status definitions have been defined for the class MS Project Methodology. In the XML

object ReleaseStatusDefs, create an XML element ReleaseStatusDef for the class MicrosoftPro-

jectPlan_Mappings. Ensure that an XML attribute ApprovedStatus is defined. Only MS project method-
ologies for which the approved status has been defined may be selected for the import or export of MS pro-
jects.

For more information about specifying the XML object ReleaseStatusDefs, see the section Configuring

Release Status Definitions for Object Classes in the reference manual Configuring Alfabet with Alfabet Ex-
pand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 172

Chapter 15: Configuring Interoperability with a Translation Ser-
vice

The XML object AlfaTranslationServicesConfig allows you to specify interoperability with a transla-

tion service for the purposes of providing an automatic translation for custom strings in the vocabularies
that have been defined in the context of the solution configuration as well as for object data translation
may be users in the context of editors and wizards in the Alfabet user interface. For more information about
the configuration required, see the sections Translating Custom Strings via the Automated Translation Ca-
pability and Configuring the Translation of Object Data in the chapter Localization and Multi-Language
Support for the Alfabet Interface of the reference manual Configuring Alfabet with Alfabet Expand.

The following prerequisites must be fulfilled to fetch translations via the automated translation capability:

• The enterprise must have a valid license to one of the following translation services:

• Google Translate®

• AWS Translate®

• DeepL® Translator

• Microsoft® Azure® Translate Text

• The XML object AlfaTranslationServicesConfig must be configured and the connection to the

translation service must be activated. For more information about the configuration of the XML

object AlfaTranslationServicesConfig, see the section Configuring Interoperability with a

Translation Service in the reference manual API Integration with Third-Party Components.

• The pre-conditions for activating the Rest API must be fulfilled. For more information, see the
reference manual Alfabet RESTful API.

• One user in the enterprise must be specified to execute self-reflective events and must start the
Alfabet Server. For more information, see the chapter Setting a User as a Self-Reflective User to
Execute Events in the reference manual Configuring Alfabet with Alfabet Expand.

• The Alfabet Server must be running and able to connect to the Internet.

The XML object usually includes an example definition. In addition, a template is available via the
XML Template in the attribute grid of the XML object AlfaTranslationServicesConfig. The
template can be copied to the XML object to avoid manually writing the configuration. In this
case, you would edit the XML elements described below. The following information describes a
configuration from scratch.

To edit the XML object AlfaTranslationServicesConfig:

1) Go to the Presentation tab, expand the XML Objects folder, and expand by the Integration
Solutions folder.

2) Right-click AlfaTranslationServicesConfig and select Edit XML.. The XML object

AlfaTranslationServicesConfig opens.

3) Optionally, you can configure the integration interface to send requests to a translation service
instance via a proxy server. To define a proxy server, add a child XML element Proxy to the XML

element AlfaTranslationServicesConfig and define the following XML attributes for the XML

element Proxy:

• url: Define the URL of the proxy server.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 173

• user: If required, enter the username for access to the proxy server. The domain name for
authentication is defined separately with the XML attribute domain and must not be specified
as part of the username.

• password: If required, enter the password for access to the proxy server.

• domain: If required, define the domain name that shall be used as part of the username for
authentication at the proxy server

Please note that server variables read the value of the XML attribute at runtime from
the server alias configuration of the Alfabet Web Application when a connection to
the integration solution is established. For information about configuration the
server variables in the server alias, see Configuring Server Variables for Integration
and Interoperability Solutions.

4) For each translation service that you want to define in the XML object, create a child XML element
TranslationServiceInfo.

5) Define the following XML attributes for each XML element TranslationServiceInfo:

• Name: Enter a name for the translation service connection.

• IsActive: Enter "true" to activate interoperability with the translation service. One
translation service may be active at any given time. If multiple connections are set to
IsActive = true, then the first active connection will be used.

• Type: Enter one of the following, depending on the translation service that you will connect to
and for which you have a valid license:

• Google

• AWS

• DeepL

• Azure

• ServiceType: You must specify AzureCognitive if the XML element Typeis set to Azure.
Failure to specify this XML attribute will result in an error if interoperability is specified with
Microsoft® Azure® Translate Text.

• Timeout: Define the HTTP request timeout for the data connection.

• AccessKey: The access key for connection to the translation service.

• SecretKey: The secret key for connection to the translation service.

6) In the toolbar, click the Save button to save the XML definition.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 174

Appendix 1: ServiceNow Ressources Accessed by the Integration API

This information is relevant to configure for example routing of requests to ServiceNow via an API gateway.

The following resources of ServiceNow must be available via the API gateway:

Resource Method Operation Type Parameters API/Resource Parameter Parameter Type Parameters Type Is Optional

/oauth_token.do POST Import and Export client_id Resource Header String Yes

 Import and Export client_secret Resource Header String Yes

 Import and Export grant_type Resource Header String Yes

 Import and Export password Resource Header String Yes

 Import and Export username Resource Header String Yes

/{tablename}.do GET Import SCHEMA Resource Query String String Yes

 Import {tablename}.do Resource Path String No

 Import and Export CSV Resource Query String String Yes

 Import jvar_report_id Resource Query String String Yes

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 175

Resource Method Operation Type Parameters API/Resource Parameter Parameter Type Parameters Type Is Optional

 Import sysparm_record_count Resource Query String String Yes

 Export WSDL Resource Query String String Yes

/api/now/v1/table/{tablename} GET Import {tablename} Resource Path String No

 Import sysparm_exclude_reference_link Resource Query String String Yes

 Import sysparm_display_value Resource Query String String Yes

 Import sysparm_limit Resource Query String Integer Yes

 Import sysparm_offset Resource Query String Integer Yes

 Import sysparm_fields Resource Query String String Yes

 Import and Export sysparm_query Resource Query String String Yes

 Export source_table Resource Query String String Yes

 Export map Resource Query String String Yes

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 176

Resource Method Operation Type Parameters API/Resource Parameter Parameter Type Parameters Type Is Optional

 Export GOTOname Resource Query String String Yes

 Export name Resource Query String String Yes

 Export sys_id Resource Query String String Yes

/api/now/v1/stats/{entryid} GET Import {entryid} Resource Path String No

 Import sysparm_count Resource Query String String Yes

 Import sysparm_query Resource Query String String Yes

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 177

INDEX

ADIF export scheme

ServiceNow Export Schema Assistant 114

ServiceNow Import Schema Assistant 102

ServiceNow integration 114

ADIF import scheme

Amazon Web Services Interface 94

Jira 127

ServiceNow integration 102

ALFABET_TECHNOPEDIA_UPDATE 35

Amazon Web Services Interface

ADIF import scheme 94

configuring connection 91

configuring data integration 94

Execution 91

Overview 91

proxy server 93

XML Object 91

AmazonWebServicesConfig 91

Apigee integration

proxy server 83

assistant

ServiceNow integration ADIF scheme 102, 114

component

Technopedia 35

data integration

Jira 119

data type

export to ServiceNow 114

import from ServiceNow 102

deactivating partially

ADIF import for ServiceNow 105

excluding data

ADIF import for ServiceNow 104

import scheme

JIRA 119

Technopedia 35

Jira

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 178

ADIF import scheme 127

configuring data import 127

export to Alfabet 120

import Alfabet data 132

Jira integration 119

JIRAConfig 119

MaxRecordCount

data export to ServiceNow 113

data import from ServiceNow 100

PageSize

data export to ServiceNow 113

data import from ServiceNow 100

proxy server

Amazon Web Services Interface 93

apigee integration 83

ServiceNow integration 117

ServiceNow integration

ADIF export scheme 114

ADIF import scheme 102

configuration overwiew 97, 107

configuring data connection 98, 111

configuring data integration 102, 114

data type definition 102, 114

deactivating ADIF entry 105

excluding data from ADIF import 104

execution 97, 107

proxy server 117

transmisson parameter 100, 113

XML Object 98, 111

ServiceNowImportConfig 98

Technopedia 35

timeout

data export to ServiceNow 113

data import from ServiceNow 100

vendor product

Technopedia 35

XML object

AmazonWebServicesConfig 91

JIRAConfig 119, 132

JIRAConfig - import 120

ServiceNowExportConfig 111

ServiceNowImportConfig 98

	Chapter 1: Configuring Integration Solutions
	Chapter 2: General Configurations Valid for Multiple Integration Solutions
	Configuring Server Variables for Integration and Interoperability Solutions
	Configuring Use of Self-Signed Certificates for Integration Solutions

	Chapter 3: Configuring Interoperability with Skype for Business Server®
	Chapter 4: Configuring Interoperability with Microsoft Teams
	Registering an App with Microsoft Azure
	Configuring Access to Microsoft Teams in Alfabet
	Enabling Snapshots of Alfabet Views to be Visible in Microsoft Teams

	Chapter 5: Configuring Interoperability with Technopedia
	Understanding the Mapping of Technopedia Products to Vendor Products in Alfabet
	Configuring the XML Object TechnopediaConfig
	Making the Technopedia Capability Available to the User Community
	Updating Technopedia Products in Alfabet via the ADIF Import Scheme ALFABET_TECHNOPEDIA_UPDATE

	Chapter 6: Configuring Interoperability with CentraSite
	Configuring the Class Model for Interoperability with CentraSite
	Configuring Connections for CentraSite Interoperability
	Configuring the Display of CentraSite Services in Alfabet
	Configuring the Update of Alfabet Data to CentraSite
	Importing CentraSite Data via ADIF Schemes

	Chapter 7: Configuring Interoperability with webMethods API Portal
	Overview of the Configuration Required for webMethods API Portal
	Configuring the Class Model for Interoperability with webMethods API Portal
	Configuring Connections and API Asset Mapping for webMethods API Portal
	Configuring the Mapping of API Portal Resources to Business Data

	Chapter 8: Configuring Interoperability with webMethods API Gateway
	Overview of the Configuration Required for webMethods API Gateway
	Configuring the Alfabet Class Model for Interoperability with webMethods API Gateway
	Configuring Connections and API Asset Mapping for webMethods API Gateway
	Configuring the Mapping of API Gateway Resources to Business Data

	Chapter 9: Configuring Interoperability with Google's Apigee API Platform Tools
	Overview of the Configuration Required for Interoperability with Apigee
	Configuring the Class Model for Interoperability with Apigee
	Configuring Connections and API Proxy Mapping for Apigee Integration
	Sending Requests to Apigee via a Proxy Server

	Creating Apigee Data Connections
	Creating an ADIF Import Scheme for Import from Apigee

	Chapter 10: Configuring the Creation/Export of Technical Services Based on WSDL and OpenAPI Specification Files
	Chapter 11: Configuring Integration of Data from Amazon Web Services
	Configuring the Connection to Amazon Web Services
	Sending Request to Amazon Web Services via a Proxy Server

	Configuring Integration of Amazon Web Services Data into the Alfabet database

	Chapter 12: Configuring Integration of Data Between ServiceNow and Alfabet
	Configuring Integration of Data from ServiceNow
	Configuring Data Transmission from ServiceNow to Alfabet
	Configuring Integration of ServiceNow Data into the Alfabet Database
	Changing an Existing Configuration for ServiceNow Integration

	Configuring Integration of Alfabet Data Into ServiceNow
	Defining Data to Export from the Alfabet database Via a Configured Report
	Configuring Data Transmission from Alfabet to ServiceNow
	Configuring the ADIF Export Scheme for Data Export to ServiceNow
	Changing an Existing Configuration for ServiceNow Integration

	Sending Requests to ServiceNow via a Proxy Server
	Sending Requests to ServiceNow via an API Gateway

	Chapter 13: Configuring Integration with Jira
	Importing Jira Data to Alfabet
	Configuring Connections to Import Jira Data to Alfabet
	Importing Jira Data to Alfabet via ADIF Schemes

	Exporting Alfabet Data to Jira
	Configuring Connections and Mapping to Export Data from Alfabet to Jira
	Configuring the Primary and Secondary Reports
	Configuring Object Filter Reports
	Configuring the ADIF Export Assistant to Export Alfabet Data to Jira
	Configuring the Event Templates to Trigger the ADIF Export Schemes for Synchronization

	Configuring Semantic Connections to Link and Synchronize Jira Projects with Alfabet Objects
	Creating a Jira Connection for Project-Based Integration
	Creating a Jira Connection for Architecture-Based Integration

	Linking to and Synchronizing the Jira Project

	Chapter 14: Configuring Interoperability with Microsoft Project
	Configuring the Connections for Interoperability with Microsoft Project
	Specifying a Wizard for Interoperability with Microsoft Project
	Specifying Release Status for Interoperability with Microsoft Project

	Chapter 15: Configuring Interoperability with a Translation Service
	Appendix 1: ServiceNow Ressources Accessed by the Integration API

