

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 1

Alfabet Reference Manual

Alfabet Data Integration
Framework

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 2

Documentation Version Alfabet 10.9.1

Copyright © 2013 - 2021 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
and/or its subsidiaries and or/its affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your
License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks
of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licen-
sors. Other company and product names mentioned herein may be trademarks of their respective owners.

This software may include portions of third-party products. For third-party copyright notices, license
terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of
Third Party Products". For certain specific third-party license restrictions, please refer to section E of the
Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright
and Trademark Notices of Software AG Products". These documents are part of the product documenta-
tion, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Software AG products provide functionality with respect to processing of personal data according to the
EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are documented in the
respective administration documentation.

http://softwareag.com/licenses

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 3

CONVENTIONS USED IN THE DOCUMENTATION

Convention Meaning

Bold Used for all elements displayed in the Alfabet interface including, for example, menu
items, tabs, buttons, dialog boxes, page view names, and commands.

Example: Click Finish when setup is completed.

Italics Used for emphasis, titles of chapters and manuals.

this

Example: see the Administration reference manual.

Initial Capitals Used for attribute or property values.

Example: The object state Active describes...

All Capitals Keyboard keys

Example: CTRL+SHIFT

File >
Open

Used for menu actions that are to be performed by the user.

Example: To exit an application, select File > Exit

< > Variable user input

Example: Create a new user and enter <User Name>. (Replace < > with variable data.)

This is a note providing additional information.

This is a note providing procedural information.

This is a note providing an example.

This is a note providing warning information.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 4

TABLE OF CONTENTS

Chapter 1: Alfabet Data Integration Framework 7
Advantages of the Alfabet Data Integration Framework 8
Preconditions 8

Required Skills 8
Licenses 9
Related Documents 9
Support 9

Chapter 2: The Alfabet Meta-Model in the Alfabet Database 10
Understanding the Standard Meta-Model 11

About Object Classes 11
About Object Class Properties 13

About the Storage of Object Data in the Alfabet Database 15
Database Table Structure and Unique Identifiers 15
Storage of Translatable Object Class Properties 16
Data Types and Formats 16
Storage of Relations Between Object Classes 19
Audit History Storage 20

Preconfigured and Customized Restrictions for Data Input 20
Object Class Configuration 21
Object Class Property Configuration 24
XML-Based Definitions 26
Reference and Evaluation Data and Class Configuration 26

Chapter 3: Configuring ADIF Schemes 28
Configuring ADIF via the ADIF Explorer 28

The ADIF Schemes Sub-Tree of the ADIF Explorer 28
The Meta-Model Sub-Tree of the ADIF Explorer 34

Configuring ADIF via XML Editing 37
Internal XML Editor 38
External Editors 39

Chapter 4: Configuring Data Import with ADIF 40
Data Processing During Import 40
Execution Steps of the Import Process 41
Preparing Data For Import 41

Microsoft® Excel® Files 42
XML Files 42
JSON Files 43
Comma-Separated Formats (*.csv) 43
External Databases 43

Conceptualizing Data Import 44
Configuring the ADIF Import Scheme 44

Creating an ADIF Import Scheme 46
Configuring Import from Different External Source Formats 50

Defining Data Upload from an External Database in a Database Import Set 52
Defining Data Upload from an LDAP Table in an LDAP Import Set 57

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 5

Defining Data Import From XML Files in an XML Import Set 62
Defining Data Import from JSON Files 67
Defining Data Import from Microsoft® Excel Files and Comma-Separated File Formats 77

Defining Import of External Data in an Import Entry 79
Mapping External Data to Temporary Tables and Alfabet Database Tables 81
Defining Relations 89
Collecting Data from Multiple External Files or Database Tables in one Temporary Table 100
Semi-Automatic Creation of Import Entry Definitions for Import Files 101

Configuring SQL Commands for Optional Enhanced Import Features 103
Creating SQL Commands 106
Use Case: Filling Empty Property Values with Default Values When Importing to Mandatory
Object Class Properties 107
Use Case: Defining Import-Related Custom Properties 108

Configuring Execution of the Import Scheme Dependent on Current Parameters 109
Configuring the Conditional Execution of Parts of the Import Scheme 109
Configuring Import Dependent on Parameters 111

Configuring Logging Parameters 117
Configuring Log Message Content 120

Configuring the Import Audit History 122
Clean-up of the audit tables 122
Information about the Import User 123

Configuring the Automatic Start of Workflows During Import 123

Chapter 5: Configuring Data Export with ADIF 126
The Export Process 126
Basic Configuration of Data Export 127

Creating an ADIF Export Scheme 128
Configuring Export to External Database Tables 130
Configuring Export to XML Files 134
Configuring Export to Comma-Separated Data Files 146
Configuring Export to Microsoft® Excel® Files 150

Configuring SQL Commands for Optional Export Enhancements 155
Creating SQL Commands 158
Use Case: Update Existing Data Records in a Target Database 158
Use Case: Defining Export-Related Custom Properties 160
Use Case: Data Restructuring Prior to Export Using Temporary Tables 161

Configuring Execution Dependent on Current Parameters 162
Configuring Conditional Execution for Parts of the Export Scheme 162
Configuring Export Dependent on Parameters 164

Configuring Logging Parameters 170
Configuring Log File Storage and Handling 171
Configuring Log Message Content 173

Chapter 6: Debugging an ADIF Configuration 176
Understanding the Debugger Interface 176
Understanding the Debugging Process 177

Required Configuration of the ADIF Scheme Prior to Debugging 177
Performing a Debug Run 179
Required Configuration of the ADIF Scheme After Debugging 182

Chapter 7: Starting Data Import, Export, or Manipulation via ADIF 184

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 6

Executing ADIF via a Command Line Tool 185
Providing Relevant Data and Configuration 186
Starting the ADIF Console Application 187

Executing ADIF via RESTful Service Calls 192
Executing ADIF via an Event 193
Executing ADIF via a Button in the Alfabet User Interface 193

Configuring the ADIF Scheme to be Executable via the User Interface 194
Adding a Button for ADIF Execution to a Configured Report 194
Adding a Button for ADIF Execution to an Object View 195

Executing and Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities
in the Alfabet User Interface 196
Configuring Availability of ADIF Execution and Control in the User Interface 196
Configuring Asynchronous Execution 197
Configuring Access Permissions to Folders in the Internal Document Selector for Asynchronous
Export to File 197
Configuring a User to Execute Self-Reflective Events 198
Controlling Success of Executed ADIF Jobs 200
Executing ADIF 202
Testing ADIF Scheme Execution 203
Scheduling ADIF Jobs for Execution at a Defined Time With the Job Schedule Functionality 204
Preconditions for Using the Job Scheduler 205
Scheduling ADIF Jobs via the Job Scheduler Functionality 209
Creating a Job Schedule for ADIF Export 211
Creating a Job Schedule for ADIF Import 215
Creating a Job Schedule for Batch Deletion of Old ADIF Session Information 218
Predefined ADIF Schemes 221

Import Scheme to Automatically Reallocate Cost Centre Costs 227

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 7

Chapter 1: Alfabet Data Integration Framework

The first issue that a company faces when implementing a central IT management software like Alfabet is
the integration of existing data about the company IT architecture and management in the database of the
IT management software. Usually data has been maintained with different methods in a variety of formats
ranging from simple text files or Microsoft® Excel® sheets to databases that store data in different for-
mats. Collecting this data from the different sources and converting them to a format that fits the struc-
ture of the inventory for central IT management can be a tedious and time-consuming process.

The second issue that a company might face is that of interfacing with other tools during runtime of the
system. Data that is stored in the central inventory might, for example, contain data relevant for account-
ing that must simultaneously be maintained in a database used by the accounting software. Decisions
must be made about where the data should be maintained and how changes are taken over by the other
database.

Usually solutions for these issues require the implementation of a variety of technologies that have been
customized to interface with each external source. Such solutions typically require significant development
effort that must be bought in combination with the standard software and a time- consuming and error-
prone conversion process in order to standardize the format of data from diverse sources to match a given
import scheme.

Software AG now offers a solution that matches the demand for high flexibility and enables customers to
develop their own solutions for data integration without the necessity to convert data to a fixed import for-
mat.

The Alfabet Data Integration Framework (referred to as ADIF) is a technology to batch import, export, and
manipulate very large amounts of data in the Alfabet database. Its interface is highly configurable by
means of native SQL commands in combination with conversion procedures delivered by Software AG. Via
ADIF, data can be imported from and exported to the following sources:

• external database tables

• CSV files

• XLS files

• XLSX files

• XML files

The ADIF interface allows data to be imported from any customer-defined format within the data source.
Data can be integrated from multiple sources in one step, which means that you can, for example, config-
ure the interface to import data that is partially derived from a database table and partially stored in XML
files.

This reference manual describes the process of data integration to the Alfabet database and provides the
knowledge required to successfully configure the interface to convert the data provided in customer-spe-
cific format to the format required to store the data in the Alfabet database tables. It also describes how to
convert Alfabet data for export into a format for further manual or third-party tool-triggered processing
outside the Alfabet components.

Please note that ADIF shall only be used to alter data stored in existing database table columns of
the Alfabet database. Although SQL commands for creation or deletion of database tables and
database table columns are allowed in ADIF to create temporary database tables that only persist

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 8

during the import process, you MUST NOT alter the existing database structure. Software AG
cannot be held responsible for any damage done to the Alfabet database by customer defined
ADIF import or export actions not obeying to this rule.

Advantages of the Alfabet Data Integration Framework

The ADIF capability provides the following advantages:

• Independent of the data format of external data

• Processing of different data formats in one step

• Visual interface that supports configuration of the business logic for import, export, or data
manipulation:

• automatic structure recognition of data to be imported

• predefined elements guide the developer through the configuration of the required import,
export or data manipulation actions

• Functionalities to ease development tasks:

• editors with support for correct configuration

• visual debugger that allows the outcome of each step of the process to be controlled during
interface configuration including the inspection of intermediary results

• customizable logging of import, export, or data manipulation steps

• possibility to create test runs so that the results are only temporarily applied to the database.

Preconditions

These sections describe the preconditions that must be met in order to use ADIF as well as additional
sources of information that are available.

Required Skills

The ADIF interface is highly customizable and can be configured by the customer without pre-configura-
tion or additional development from Software AG. The following skills are required to configure the import
interface.

• You must know how to write commands in native SQL in order to configure the Alfabet Data
Integration Framework. Commands must be written in the SQL version that can be interpreted by
the database server hosting the Alfabet database.

• Knowledge about the Alfabet meta-model is required to implement mapping of data to the database
tables in Alfabet. See The Alfabet Meta-Model in the Alfabet Database for more information.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 9

Licenses

The Alfabet Data Integration Framework requires a special license agreement with Software AG. ADIF is not
included in the base standard functionalities of Alfabet.

Related Documents

It is recommended that you consult the following documents during configuration of the ADIF interface:

• Documentation of the Alfabet Meta-Model

A detailed description of all relevant object classes of the Alfabet meta-model and their properties, their
meaning within the class model, their relation with other object classes and information about how proper-
ties are represented in the database table of the object class. This document helps you to understand the
target structure for data import and the source structure for data export or manipulation.

• Reference manual Configuring Alfabet with Alfabet Expand

Customization of the standard Alfabet solution may be required when importing data into the Alfabet data-
base to provide the base structure required to import the data. For example, custom properties can be
added to object classes to store customer-specific data that is not part of the standard meta-model or ac-
cess rights can be defined for object classes.

• Reference manual Configuring Evaluation and Reference Data in Alfabet

This document provides information about configuration steps that are required before importing data re-
lated to cost planning, implementation of roles, and evaluations of objects.

Support

If you encounter any problems during the use of ADIF, please consult Software AG Support:

Please open a ticket in the Empower eService for any service request as well as all non-standard support
incidents such as training requests, scripting, or data integration:

https://empower.softwareag.com

When you submit a ticket for a service request, you should include the main release number and patch ver-
sion of your Alfabet product. This information can be accessed by clicking Help < About Alfabet. Tickets
will be recorded and transferred to the relevant team.

Empower eService also includes:

• tracking ticket statuses

• local telephone numbers for support.

In addition to the local support telephone numbers, you can use the following toll-free number:

+800 2747 4357

https://empower.softwareag.com/

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 10

Chapter 2: The Alfabet Meta-Model in the Alfabet Database

One of the primary tasks in configuring an ADIF scheme is the mapping of external data to the data in the
Alfabet database. Data storage in the Alfabet database is determined by the Alfabet meta-model, which is
the foundation of the Alfabet solution. The meta-model specifies the object classes used in the Alfabet so-
lution, the properties of the object classes, and the relationships between object classes.

The information in this section provides basic information about the structure of the meta-model and its
storage in database tables. It is highly recommended that you read this section in order to understand the
detailed description provided about each of the meta-model class in the technical documentation of the
meta-model.

The following information is available:

• Understanding the Standard Meta-Model

• About Object Classes

• Integrity References

• About Object Class Properties

• About the Storage of Object Data in the Alfabet Database

• Database Table Structure and Unique Identifiers

• Storage of Translatable Object Class Properties

• Data Types and Formats

• Storage of Relations Between Object Classes

• Audit History Storage

• Preconfigured and Customized Restrictions for Data Input

• Object Class Configuration

• Object Class Stereotypes

• Class Keys

• Mandate Data Handling

• Object Class Property Configuration

• Default Values for Object Class Properties

• Size Restrictions for Object Class Properties

• Validators for Object Class Properties

• Protected and Customized Enumerations Assigned to Object Class Properties

• XML-Based Definitions

• Reference and Evaluation Data and Class Configuration

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 11

Understanding the Standard Meta-Model

The standard meta-model provided by Software AG includes a class model that is made up of object clas-
ses and their object class properties. The following information describes information relevant for standard
object classes and object class properties. Information that is important to the ADIF process for configured
object classes and object class properties is described later in this chapter in the section Preconfigured and
Customized Restrictions for Data Input.

The following information is available about the class model:

• About Object Classes

• Integrity References

• About Object Class Properties

About Object Classes

The Alfabet class model is based on object classes, some of which are visible in the configuration tool
Alfabet Expand. Each object class has a set of preconfigured object class properties and attributes.

The class model can be grouped into three different categories of object classes with regard to their rele-
vance for data import:

• The extendable meta-model that represents instance object classes.

These classes are used to persistently store data about the customer’s IT landscape in the Alfabet data-
base. They are displayed in the explorer of the configuration tool Alfabet Expand. Most of these classes are
customizable and customers can add custom properties to the classes to store company specific data that
is not reflected in the standard properties of the object class. The extendable meta-model is the main tar-
get for data import via the ADIF scheme.

• Object classes that represent objects designed to support functionality.

These classes are used to persistently store data about object classes supporting functionality. This in-
cludes, for example, the class TimeStatus that is used to store the lifecycle of objects or the class
RoleTypeConfig that is used to store information about which roles a user can have with regard to an ob-
ject. These object classes are also relevant for data import via the ADIF scheme. Only the most important
object classes for storage of functionality-related data are visible in the explorer in Alfabet Expand, but the
documentation of the meta-model provides detailed information about all these classes.

• Auxiliary constructs required for Alfabet functionality.

These object classes are not relevant for data import and therefore not described in the meta-model docu-
mentation. Some of the auxiliary object classes are persistently stored in database tables, whereas others
are not persistently stored.

Please note that object classes having the attribute Automatically Managed set to
true are object classes that shall only be changed by mechanisms triggered by the
Alfabet software components and must not be changed by ADIF import or any third
party component.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 12

In the Meta-Model tab in the configuration tool Alfabet Expand, the Class Model explorer displays a set of
object classes that are relevant to configuration of the Alfabet solution. The object classes and their object
class properties are visualized as nodes in the explorer structure.

You may see any of the following under the Classes node:

• A private class has a red lock icon and cannot be modified. Custom properties cannot be configured
for private classes.

• A protected class has an orange lock icon and can be edited in a limited way. A protected class
typically has private properties that cannot be edited but allows for custom properties to be created
and configured for the class.

• A public class has no lock displayed on the icon. This is a custom class that has typically been
created by your enterprise in the configuration tool Alfabet Expand. All relevant attributes may be
edited, and the custom class may be deleted. For custom classes created and defined by your
enterprise, the attribute Tech Name must be explicitly defined.

For each object class displayed in the Alfabet Expand interface (as well as those that are not visible), a da-
tabase table exists. Each class property displayed below its object class node corresponds to a column in
the database table.

If an object class node or an object class property node is selected in the explorer structure, the attributes
of the class/property will be displayed in the right pane in the Alfabet Expand interface. These attributes
specify the technical data about the object class/object class property that is used to build the database
table and to process the object data within the Alfabet solution.

 FIGURE: Attributes and properties of the object class Application displayed in the explorer of the tool Alfabet Expand

The object class within the Alfabet solution are identifiable by the following three attributes:

• Name: The attribute Name is unique for each object class in the meta-model as well as for each
property in the object class. The attribute Name is used to display the object classes and object
class properties in the Alfabet Expand user interface and to specify object classes and object class

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 13

properties in the Alfabet query language. (The Alfabet query language is used to search and retrieve
data from the database.)

• Tech Name: The attribute Tech Name is unique for each object class and specifies the database
table name for the object class. The attribute Tech Name of an object class property specifies the
name of the database table column for the property. The Tech Name is therefore relevant to identify
object classes and their properties in native SQL queries when importing data via the ADIF scheme.

• Caption: The attribute Caption specifies the name of the object class or object class property
displayed in the Alfabet interface.

The documentation of the standard meta-model includes the relevant information for each object class.
For some object classes, the data that may be input to the database table may be restricted due to custom-
izations made to the object class. Such customizations include, for example, the configuration of object
class stereotypes, class keys requiring unique data input, and the implementation of the mandate concept.

When importing data via the ADIF scheme, such restrictions must be taken into consideration when map-
ping and importing data to the database, otherwise the data import may not be valid. For an overview of
potential configurations that may impact the mapping of object classes in the ADIF scheme, see the sec-
tion Preconfigured and Customized Restrictions for Data Input.

Integrity References

In the Alfabet meta-model, objects in an object class may have a dependent relationship on other objects in
other classes. This is described in the Integrity Info attribute.

If an object is deleted, all dependent objects of dependent object classes will also be deleted. For example,
if an application is deleted, all information flows for which this application is specified in the Owner, To or
From property of an object are also deleted.

The documentation of the standard meta-model includes the relevant dependency information for each
object class.

Please note that a default value is set for the Apply Base Integrity attribute for private and pro-
tected object classes. The value True is set if base integrity management is performed for the
private or protected object class. In this case, if an object of the object class is deleted all refer-
ences to the deleted object will also be deleted. If the value False is set, no integrity manage-
ment will be performed for the object class.

In order to improve performance, the value False may be set for some custom object classes if
no object classes reference the custom object class. However, it is highly recommended that you
contact Software AG Support if you want to set the value to False for a custom object class.
Setting the Apply Base Integrity property to False may result in serious inconsistency prob-
lems in the database.

About Object Class Properties

Most object classes in the meta-model have object class properties. You may see any of the following un-
der the Properties node:

• A private property has a red lock icon and cannot be modified.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 14

• A protected property has an orange lock icon. This is a standard property that allows some property
values to be edited including, for example, the Caption attribute and the Hint attribute. A standard
property may not be deleted.

• A public property has no lock displayed on the icon. This is a custom property that has typically been
created by your enterprise in the configuration tool Alfabet Expand. All relevant attributes may be
edited, and the custom property may be deleted. For custom properties created and defined by your
enterprise, the attribute Tech Name has to be explicitly defined.

Each object class property has an attribute Property Type that specifies the data type of the property (for
example, String, Date, Integer, Reference, etc.). The property type definition will determine what other at-
tributes can be defined for the object class property. For example, for a property of the type String, you can
optionally define the Default, Enum, Size, or Validator attributes. For an overview of the data types possi-
ble for the Property Type attribute, see the section Data Types and Formats.

 FIGURE: Attributes of the object class property StartDate of the object class Project displayed in the explorer of the tool
Alfabet Expand

The documentation of the standard meta-model includes the relevant information for each object class
property. For some property types, the data that may be written to the database table may be restricted
due to additional meta-model or solution configurations. Such customizations include, for example, config-
uration of data input validators, enumerations, reference data, or specifications made in XML objects.

When importing data via the ADIF scheme, such restrictions must be taken into consideration when map-
ping and importing data to the database, otherwise the data import may not be valid. For an overview of

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 15

potential configurations that may impact the mapping of object classes in the ADIF scheme, see the sec-
tion Preconfigured and Customized Restrictions for Data Input.

For more information about defining custom properties, see the section Configuring Custom
Properties for Protected or Public Object Classes in the reference manual Configuring Alfabet
with Alfabet Expand.

About the Storage of Object Data in the Alfabet Database

A database table exists in the Alfabet database for each persistent object class. Additional database tables
store relationships between objects as well as the audit history of objects.

The following information is available:

• Database Table Structure and Unique Identifiers

• Storage of Translatable Object Class Properties

• Data Types and Formats

• Storage of Relations Between Object Classes

• Audit History Storage

Database Table Structure and Unique Identifiers

The name of the database table is specified by the Tech Name attribute of the object class. The names of
the columns in the table are specified by the Tech Name attributes of the object class properties of the re-
spective object class. For most standard Alfabet object classes and properties, the Tech Name is identical
to the Name attribute of the object class or property. All Tech Name attributes are stored in upper case let-
ters in Alfabet (<TECHNAME>).

If the technical name derived from the object class name conflicts with keywords reserved for the rela-
tional database management system (RDBMS) of the Oracle or Microsoft SQL Server, the Tech Name will be
written with a prefix "T_" for tables of object classes and a prefix "A_" for columns representing attributes.

In addition to the columns for object class properties, a database table has several additional columns that
are automatically added by the Alfabet software when an object is added to the database. Values for these
columns may NOT be included in the data import for new objects. However, such columns can be used to
identify existing objects:

• REFSTR: The REFSTR is a unique reference string that identifies the object in the database. The

REFSTR is used to store relations between objects. During data import via the ADIF scheme, REFSTRs
for new objects must be set before a relation between a new object and any other object is created.
The mechanism for setting REFSTRs is part of the ADIF import scheme mechanics.

• INSTGUID: The INSTGUID is a unique attribute that can be used to identify the object across

databases. The INSTGUID is even unique with regard to different databases. If objects are added to
two different databases, they may have the same REFSTR and ID in both databases, but the
INSTGUID is different. During data import via the ADIF scheme, INSTGUIDs for new objects are set
automatically and must not be included in the import specification.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 16

• ALFA_INSTID: The ALFA_INSTID is a subset of the REFSTR property. During data import via the

ADIF scheme, ALFA_INSTIDs for new objects are set automatically. The ALFA_INSTID may not be
included in the import specification.

• ID: An ID is specified for some object classes that are visible in the Alfabet interface in order to help

users working in the Alfabet interface to identify or search for objects. For visible object classes for
which the property ID exists, the ID is filled automatically. The ID attribute consists of a prefix that
is based on the value of the attribute ID Prefix of the object class and a number. During data import
via the ADIF scheme, IDs for new objects are set automatically and should NOT be included in the
import specification.

 FIGURE: Database table for the object class Application showing attributes that are automatically added to the table

Storage of Translatable Object Class Properties

One language is always configured as the default language in Alfabet. However, if your enterprise requires
additional language options for the Alfabet interface, your solution designer will configure relevant cultures
for the enterprise in the configuration tool Alfabet Expand.

If the attribute Support Data Translation is set to True for a culture, then the database tables will include
columns for translation purposes for some object classes. For object classes that are visible in the Alfabet
interface, some object class properties are translatable, and users can specify translations for properties
(mainly the Name and Description properties) in the relevant object class editor.

The translations are stored in separate columns in the database table with the column name <property
Tech Name>_<language code>. For example, the Name property of the class Application can be translated

to German. The number 1031 is the language code for German. Therefore, the column NAME_1031 is au-

tomatically added to the database table. Please note that language columns are only available in database
tables if the attribute Support Data Translation is set to True for a culture.

Data Types and Formats

Each object class property has an attribute Property Type that specifies how data must be defined (for
example, as a string, date, integer, reference, etc.). The Property Type determines how the data is stored
in the database tables. The data storage mode may be different for Oracle® database servers and Mi-
crosoft® SQL Servers®.

Some property types may be further configurable via other attributes of the object class property. For ex-
ample, for a property of the Property Type String, you can optionally define an enumeration that speci-
fies values that are allowed to be used for the string property. Likewise, many property types allow a de-
fault value. The value specified for the default value is automatically written to the database if the user
does not explicitly define a value for the property in the Alfabet interface. For more information about the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 17

possible dependencies for object class properties, see the section Preconfigured and Customized Re-
strictions for Data Input.

The following table provides an overview of the permissible property types for object class properties, the
data storage mode for both Microsoft® SQL Server® and Oracle® database servers, and additional infor-
mation relevant for the property type.

Property
Type

Stored in MS
SQL Server®
Databases As:

Stored in Ora-
cle Databases
As:

Additional Information

Boolean bit NUMBER A default value can be defined via the Default attribute
for properties of the Property Type Boolean.

Allowed values: 1 | 0

(1 = true, 0 = false)

Date datetime TIMESTAMP

DateTime datetime TIMESTAMP

Integer int NUMBER An enumeration can be defined via the Enum attribute
for properties of the Property Type Integer.

A default value can be defined via the Default attribute
for properties of the Property Type Integer.

For more information, see Preconfigured and Custom-
ized Restrictions for Data Input.

Real float FLOAT An enumeration can be defined via the Enum attribute
for properties of the Property Type Real.

A default value can be defined via the Default attribute
for properties of the Property Type Real.

The number of decimal places allowed can be defined
via the Precision attribute for properties of the Prop-
erty Type Real.

For more information, see Preconfigured and Custom-
ized Restrictions for Data Input.

RealAr-
ray

nvar-
char(max)

NCLOB An enumeration can be defined via the Enum attribute
for properties of the Property Type RealArray.

Refer-
ence

varchar(20) VAR-
CHAR2(20)

The Type Info attribute must be defined for a property
of the Property Type Reference.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 18

Property
Type

Stored in MS
SQL Server®
Databases As:

Stored in Ora-
cle Databases
As:

Additional Information

Refer-
enceArra
y

nvar-
char(max)

NCLOB The data is stored as NCLOB in the database table of the
object only if the Reference Support attribute =
"false". If the Reference Support attribute = "true",
the data is stored in the RELATIONS table.

The Type Info attribute must be defined for a property
of the type ReferenceArray.

For more information about the impact of the Refer-
ence Support attribute on data storage as well as addi-
tional details about the storage of relations, see Storage
of Relations Between Object Classes

String var-
char($Size$
)

NVAR-
CHAR($Size$
)

An enumeration can be defined via the Enum attribute
for properties of the type String.

A required format for input values can be defined for
properties of the type String.

A default value can be defined via the Default attribute
for properties of the type String.

The maximum amount of permissible characters may
be defined via the Size attribute for properties of the
type String.

For more information, see Preconfigured and Custom-
ized Restrictions for Data Input.

Strin-
gArray

nvar-
char(max)

NCLOB An enumeration can be defined via the Enum attribute
for properties of the type StringArrays.

For more information, see Preconfigured and Custom-
ized Restrictions for Data Input.

Text nvar-
char(max)

NCLOB

Time datetime TIMESTAMP

Url nvar-
char(max)

NCLOB The data is stored as a title text and the URL divided by
a line break written as character code 13 followed by
character code 10. If no title is provided, the definition
must start with the linebreak.

For example:

Title

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 19

Property
Type

Stored in MS
SQL Server®
Databases As:

Stored in Ora-
cle Databases
As:

Additional Information

http://target.com

which is identical to

TitleCHAR(13)CHAR(10)http://target.c
om

Storage of Relations Between Object Classes

The attribute REFSTR is a unique internal object ID that explicitly identifies each object in the database and
is used for references between objects in the database.

In database columns of object class properties of the data type Reference, the REFSTR of the referenced
object is stored as the data type varchar(20) in an SQL database and as the data type VARCHAR2(20) in an
Oracle database.

Object class properties of the type ReferenceArray are handled in two different ways depending on the
setting of the attribute Reference Support of the object class property:

• If Reference Support is set to true, the relations specified by the property are stored in the
RELATIONS table. No database column is available for the property in the table of the object class
itself. The RELATIONS table specifies the relation in the following database columns:

• FROMREF: The REFSTR value of the object that is referencing another object. It is stored as

the data type varchar(20) in an SQL database and as the data type NVARCHAR2(20) in an
Oracle database.

• PROPERTY: The property of the object specified with FROMREF that defines the relation

between the objects. It is stored as the data type nvarchar(64) in an SQL database and as
the data type VARCHAR(64) in an Oracle database.

• TOREF: The REFSTR value of the referenced object It is stored as the data type

varchar(20) in an SQL database and as the data type NVARCHAR2(20) in an Oracle
database.

If references stored in the RELATIONS table are to be imported via an ADIF scheme, the RELATIONS table is
filled automatically by the ADIF mechanism if a specified data format is fulfilled.

• If Reference Support is set to false, the relations are stored directly in the database table of the
object as a string stored as the data type nvarchar(max) in an SQL database and as the data type
NCLOB in an Oracle database. The REFSTR of all objects referenced by the property are listed
whitespace separated.

Object class properties of the data type Reference or ReferenceArray can target only objects in a de-
fined subset of object classes in the Alfabet meta-model. This subset is defined by the attribute Type Info
of the object class property defining the reference or reference array. The attribute Type Info of the object
class property specifies the name of the allowed target object classes as a comma-separated list.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 20

Audit History Storage

By default, the audit history is displayed per object class on the Alfabet interface. The user can access the

change history of a selected object by clicking the Audit Trail button. You can create native SQL-
based configured reports to extract other information from the audit history such as user-centric change
tracking, history trend reporting, reporting on new and changed objects (for example, applications), infor-
mation quality management.

Audit information is stored in a separate database table for each object class. For each object class for
which the attribute Audit is set to "true", a table named <ObjectClassTechName>_AU is created. Whenever
an object is changed, a new line is written to the audit table that stores information about the change that
has been performed, the user who has performed the change, and the time that the change was made.

For information about the structure of the database table for auditing, see the section Defining
Audit Management Related Configured Reports in the reference manual Configuring Alfabet with
Alfabet Expand.

During import via ADIF, the audit history tables of the object classes for objects that have been changed,
created or deleted via the ADIF procedure are automatically filled with the appropriate information. The
user who is triggering the ADIF import is defined as the user performing the change.

Some of the mechanisms required for the ADIF import lead to changes to database columns that have no

column in the audit table (for example, for INSTGUID). When a change is performed to the object, a new

line is added to the audit table. This line indicates that a change has been made, but the type of change is
not visible in the audit table because all object class properties remain unchanged. The ADIF interface al-
lows the import scheme to be configured so that the lines with no visible change are automatically delete
from the audit table.

The ADIF import definitions should never include the audit tables. Changing the audit table for an
object can lead to severe database inconsistencies and may result in an error occurring.

Preconfigured and Customized Restrictions for Data Input

Alfabet allows for a significant amount of customization in order to configure the software to the needs of
your enterprise. In addition to the customizations of the class model including, for example, the configura-
tion of object class stereotypes or the creation and definition of custom properties, a variety of other con-
figurations may be required to support various functionalities in Alfabet.

• The configuration of reference and evaluation data determine the permissible values for some object
class properties. Evaluations and their indicators, cost and income types, role types, and diagram
views are examples of some of the objects that are based on configurations that may be assigned to
a set of object classes used in your enterprise. Using a value other than the values specified for the
object class in the Configuration module may result in an error occurring.

• The configuration of XML-based objects in Alfabet Expand determine the permissible data input for
some object classes or object class properties. For example, multiple object classes have a property
Status that allows the release status of the object in the approval process to be defined. The
possible values for release status definitions are configured in the XML object ReleaseStatusDefs.
Using a value other than the values specified for the object class in such an XML definition may
result in an error occurring.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 21

The customization of the meta-model must be performed prior to importing data via the
ADIF scheme.

It is imperative to the success of the integration procedure that all customized configurations are
communicated to the parties involved in the data mapping process. For each customization
made to the meta-model, it is highly recommended that your enterprise validates the correct-
ness of the mapping of impacted objects in the ADIF schema. Otherwise, potential malfunction
may result.

For detailed information about the potential configurations that can be made to the Alfabet solu-
tion, see the reference manual Configuring Alfabet with Alfabet Expand and the reference man-
ual Configuring Evaluation and Reference Data in Alfabet.

The following sections discuss potential areas of customization of Alfabet. If your solution configuration
includes such customizations, your enterprise’s meta-model will be different from the standard meta-
model documented here.

Potential areas of customization include:

• Object Class Configuration

• Object Class Stereotypes

• Class Keys

• Mandate Data Handling

• Object Class Property Configuration

• Default Values for Object Class Properties

• Size Restrictions for Object Class Properties

• Validators for Object Class Properties

• Protected and Customized Enumerations Assigned to Object Class Properties

• XML-Based Definitions

• Reference and Evaluation Data and Class Configuration

Object Class Configuration

For some object classes, the data that may be written to the database table may be restricted due to cus-
tomizations made to the object class. The documentation of the meta-model includes information about
the restrictions that apply to each object class in the standard meta-model.

Such restrictions must be taken into consideration when mapping to the database, otherwise the data im-
port may not be valid. It is your responsibility to be informed about the customizations in your enterprise’s
solution configuration that are relevant to the integration procedure.

The following configuration issues are relevant to object classes:

• Object Class Stereotypes

• Class Keys

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 22

• Mandate Data Handling

Object Class Stereotypes

An object class stereotype is a sub-classification within an object class. By configuring object class stereo-
types, it is possible to specify an object class to have multiple class types, each of which captures a speci-
fied set of object class properties, reference data, and class configurations.

Stereotypes can only be configured for the object classes Application, Component, Device, ICT Object, Do-
main, and Project. The solution designer creates the object class stereotypes for these object classes in an
XML definition via the attribute Stereotype on the object class.

These object classes also have an object class property Stereotypes of the data type String. When add-
ing objects to the database via the integration procedure, the value for the object class property Stereo-
type must be identical to the stereotype name of one of the stereotypes defined in the attribute Stereo-
type of the object class.

It is your responsibility to be informed about customized object class stereotypes in your enterprise’s solu-
tion configuration that are relevant to the integration procedure.

Please note the following information that is relevant to the implementation of object class stereotypes in
your enterprise:

• For the object classes Project and Domain, the configured object class stereotypes must be
hierarchically structured and specified. These stereotypes require the additional configuration of
XML objects. For more information about the additional configuration requirements required for the
object classes Project and Domain, see the sections Configuring the Project Management
Capability and Configuring Domain Models and Domain Planning in the reference manual
Configuring Alfabet with Alfabet Expand.

• A stereotype framework can also be configured for value nodes implemented in the Strategy
Deduction functionality. In this case, the configuration of stereotypes is not made on the object
class but rather in the XML object ValueManager. When adding objects to the database via the
integration procedure, you must ensure that the value for the object class property Stereotype is
identical to the stereotype name of one of the value node stereotypes defined in the XML object
ValueManager.

For more information about this configuration, see the section Configuring the Strategy Deduction Capabil-
ity in the reference manual Configuring Alfabet with Alfabet Expand.

Class Keys

Class keys are configurable for artifact object classes. A class key with an attribute Unique set to True
specifies one or a combination of object class properties that must be unique for that class. If the data does
not fulfill the requirements specified in the class key definition, the object cannot be created in the data-
base.

For example, a class key for the object class Application defines that the combination of the
Name and Version properties must be unique. When a user tries to create an application via the
Alfabet interface that is identical in both name and version with an existing application in the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 23

Alfabet database, the attempt to create the application is rejected and an error message informs
the user that the object already exists.

The Alfabet meta-model also allows class keys to be specified that do not require uniqueness. In this case,
the class key attribute Unique will be set to False. The purpose of such a class key is to speed up the
search functionality by creating an index for each class key. If the class key attribute Unique will be set to
False, the class key is NOT relevant for data import via the integration procedure.

It is your responsibility to be informed about configured object class stereotypes relevant to the persons
responsible for the integration procedure.

It is your responsibility to be informed about the customized class keys in your enterprise’s solution config-
uration that are relevant to the integration procedure When importing data via ADIF, import of data that
leads to a class key violation will cause an error to occur and the import process to stop.

For more information about class keys, see the section Configuring Class Keys for Object Classes
in the reference manual Configuring Alfabet with Alfabet Expand.

Mandate Data Handling

The mandate capability in Alfabet is a means to organize and structure the federated architecture of hold-
ing companies and federated enterprises. The assignment of mandates to users and objects allows the
holding company to structure the objects in the enterprise architecture and regulate visibility and accessi-
bility to common objects across some or all business units.

The assignment of objects to mandates is stored in the database column MANDATEMASK in the database ta-
bles for all object classes that can have mandates in the Alfabet database. The mandate mask is an integer
that represents a bit string calculated based on the number and kind of mandates assigned to an object.

When a company specifies a new mandate, an object of the class ALFA_MANDATE is created. Each mandate
has an ID property. The ID is automatically assigned to the new mandate. The ID is a running number
starting with 1 that defines the position of the mandate in the bit string of the mandate mask.

The mandate mask consists of one bit for each mandate. When the object is assigned to a mandate, the bit
on the position of the mandate in the mask is set to 1. If the object is not assigned to a mandate, the bit on
the position of the mandate is set to 0. The first bit in the bit string (the position 0) is set to 1 if the object is
not assigned to any mandate. For objects assigned to a mandate, the first bit in the bit string is set to 0.

 FIGURE: Example of a mandate mask in a configuration with 5 mandates. The object is assigned to mandate 2 and 3.

To evaluate whether an object is visible to a user, the mandate mask of the object is compared bit-wise
with a mandate mask generated from the mandate settings of the current user.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 24

When the mandate-related access permissions for an object are evaluated, the mandate mask of the cur-
rent object is compared with the mandate mask of the current mandate that the user is logged in with. This
mandate mask consists of one bit for each mandate. The bit on the position of the current mandate and the
first bit in the bit string is set to 1.

The mandate mask generated to evaluate the current access permissions of the user is not iden-
tical to the mandate mask of the user stored in the property MANDATEMASK of the object class
Person. The mandate mask stored with the property MANDATEMASK defines the access permis-
sions for other users to the data about the user stored in the Alfabet database. The current user
mandate mask generated to evaluate access permissions is not stored in the database but gen-
erated during evaluation of access permissions as a parameter describing the current environ-
ment.

During evaluation of access permissions, the current user mandate mask and the object mandate mask are
compared bitwise. If the bit on a position is 1 for both object and user, the resulting bit on the position is 1. If
either the user or the object or both has a bit value of 0, the bit on the position is set to 0.

The result is a bit string representing an integer. If the bit string contains at least one bit set to 1, the result-
ing integer is higher than 0 and the object is visible to the user.

 FIGURE: Calculation of the permission to an object based on the mandate masks of the current user mandate and the
object

Object Class Property Configuration

For some property types, the data that may be input to the database table may be restricted due to addi-
tional meta-model or solution configurations. When importing data via the ADIF scheme, such restrictions
must be taken into consideration when mapping and importing data to the database, otherwise the data
import may not be valid.

The documentation of the standard meta-model includes restrictions preconfigured by Software AG that
apply to each object class property. Furthermore, relevant information is provided if a customized configu-
ration is possible that may impact the data input. In this case, it is your responsibility to be informed about
customizations in your enterprise’s solution configuration that are relevant to the integration procedure.

The following configuration issues are relevant to object class properties:

• Default Values for Object Class Properties

• Size Restrictions for Object Class Properties

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 25

• Validators for Object Class Properties

• Protected and Customized Enumerations Assigned to Object Class Properties

Default Values for Object Class Properties

Default values can be specified for object class properties of the Property Type String, Real, Integer,
and Boolean.

If a default value is defined for an object class property via the attribute Default Value, the default value
will be entered in the database table column for the object class property for each new object if no other
value has been specified by the user creating the object.

Default values for custom object class properties are not set automatically during import. When importing
data to the Alfabet database via the ADIF scheme, the import definition must specify the default value for
custom object class properties that do not have a relevant value defined.

It is your responsibility to be informed about default values configured for custom object class properties in
your enterprise’s solution configuration.

Size Restrictions for Object Class Properties

Size restrictions can be specified for the value defined for object class properties of the Property
Type String. If a value is defined for the attribute Size of an object class property, the variable $Size$ for
the varchar to store the property equals Size +1.

Validators for Object Class Properties

Validators can be specified for object class properties of the Property Type String. The attribute Valida-
tor of the object class property allows a regular expression to be specified that enforces a required format
for that property.

It is your responsibility to be informed about custom validators configured for object class properties in
your enterprise’s solution configuration.

For more information about the syntax conventions for regular expressions, see http://msdn.mi-
crosoft.com/en-us/library/hs600312(VS.71).aspx.

Protected and Customized Enumerations Assigned to Object Class Properties

Enumerations allow a range of permissible values for a property to be defined. Enumerations can be de-
fined and specified for object class properties of the Property Type String, StringArray, and Integer
in Alfabet Expand. An enumeration can be reused for multiple object class properties for multiple object
classes.

In Alfabet Expand, existing protected and custom enumerations are visible in the Meta-Model tab under
the explorer node Enums. Each enumeration has a Name attribute, and the permissible values are defined

http://msdn.microsoft.com/en-us/library/hs600312(VS.71).aspx
http://msdn.microsoft.com/en-us/library/hs600312(VS.71).aspx

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 26

via the Items attribute. Once the enumeration is assigned to the relevant object class property via its
Enum attribute, the permissible values that users can select for an object class property are restricted to
the values defined for the enumeration.

Protected enumerations are part of the standard meta-model and have been preconfigured by Software
AG. These enumerations cannot be deleted. However, the permissible values that are defined in the Items
attribute may be edited. If the configuration of a protected enumeration has been customized by your en-
terprise, then the permissible values that can be mapped to the associated object class property will differ
from the standard permissible values described in the meta-model documentation.

It is your responsibility to be informed about customizations made to protected enumerations in your en-
terprise’s solution configuration.

For information about the configuration of protected and custom enumerations, see the section
Defining Protected and Custom Enumerations in the reference manual Configuring Alfabet with
Alfabet Expand.

XML-Based Definitions

For some object class properties, the permissible data input is restricted to values that are coupled with an
XML object that must be configured in Alfabet Expand. For example, multiple object classes have a property
Status that allows the release status of the object in the approval process to be defined. The possible val-
ues for release status definitions are configured in the XML object ReleaseStatusDefs. Using a value other
than the values specified for the object class in such an XML definition may result in an error occurring.

It is therefore highly recommended that you consult the meta-model documentation prior to mapping and
importing values for an object class property via the ADIF scheme. The meta-model documentation pro-
vides detailed information about potential dependencies between XML object configurations and the defi-
nition of input values for object class properties.

It is your responsibility to be informed about customizations made to XML object definitions in your enter-
prise’s solution configuration.

For information about the configuration of XML objects, see the section Working with XML Ob-
jects in the reference manual Configuring Alfabet with Alfabet Expand.

Reference and Evaluation Data and Class Configuration

The permissible values for some object class properties are determined by the configurations made for the
associated object class. These configurations are carried out in the Configuration module of Alfabet. Eval-
uations and their indicators, cost and income types, role types, and diagram views are examples of some of
the objects that are based on configurations that may be assigned to a set of object classes used in your
enterprise.

Such configuration objects are created independent of an object class. The configuration objects must
then be assigned to the object class(es) that they are relevant for. This allows you to create reference or
evaluation data that is relevant to a specific object class context. For example, indicators required to evalu-
ate applications typically differ from the indicators required to evaluate devices.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 27

It is therefore highly recommended that you consult the meta-model documentation prior to mapping and
importing values for an object class property via the ADIF scheme. The meta-model documentation pro-
vides detailed information about potential dependencies between configuration objects and the definition
of input values for object class properties.

It is the responsibility of your enterprise's solution designer to convey any information about relevant con-
figuration objects to the persons responsible for the integration procedure.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 28

Chapter 3: Configuring ADIF Schemes

This chapter provides general information about how to work with the interfaces that allow you to config-
ure ADIF schemes. The process for data import and export and the required structure and configuration of
ADIF schemes for the import and export of data is different. Therefore, the detailed description of how to
define data manipulation via ADIF is described in separate chapters that presume knowledge about the
configuration basics described in this chapter:

• Configuring Data Import with ADIF

• Configuring Data Export with ADIF

The ADIF scheme is XML based. Configuration of the ADIF scheme can be performed in a user interface de-
signed by Software AG or directly in a text editor. Both options are described below.

Configuring ADIF via the ADIF Explorer

ADIF import and export schemes can be created and managed in the tool Alfabet Expand or in a separate
ADIF user interface. In both cases the design is identical.

ADIF import and export schemes are managed via an explorer tree. The explorer has two nodes on the root
level: ADIF Schemes and Meta-Model. The ADIF Schemes sub-tree allows you to create and edit ADIF im-
port and export schemes. The Meta-Model tab provides information about the Alfabet meta-model in order
to help you to define your ADIF schemes.

The ADIF Schemes Sub-Tree of the ADIF Explorer

Each ADIF import or export scheme that you create will be listed in the explorer below the root node ADIF
Schemes. The ADIF scheme is configured by adding command elements to the explorer as sub-elements
of the ADIF scheme and by specifying the relevant attributes of these sub-elements.

All changes performed in the ADIF explorer of Alfabet Expand are automatically saved to the
Alfabet database. The Save button is not required to save the changes to the ADIF scheme.

Adding and Configuring ADIF Scheme Elements

New ADIF scheme elements can be added to the explorer tree using the context menu available for the ex-
isting explorer nodes. The method to add a new ADIF scheme element is the same, regardless of the ele-
ment type (for example, attributes or SQL commands). To add a new ADIF scheme element to an existing
explorer node:

1) In the explorer, right-click the explorer node element to which you want to add a new ADIF scheme
element and select Create < include option >. The context menu only offers the options that are
applicable for the selected explorer node element.

The explorer displays the name of the explorer node element and an icon that indicates the element type.
The icon has a green mark to indicate that the new explorer node element is active. New explorer node

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 29

elements are active by default. You can deactivate any explorer node elements to inhibit execution by set-
ting the attribute Is Active of the node to False. The explorer node element is then displayed with a red
mark:

 FIGURE: Active and inactive ADIF scheme nodes

When an XML element node is expected to have a high number of element types as child nodes, folder
nodes are automatically added to the XML element to structure the content. These folders are only availa-
ble in the explorer and do not have any impact on the storage of data in the XML.

When you click a node in the explorer, the attributes of the XML element represented by the node are dis-
played in the property window on the right of the explorer tree. You can edit all attributes displayed in
black. Attributes displayed in grey are view only.

 FIGURE: The ADIF Schemes sub-tree of the ADIF explorer

When you create a new ADIF scheme element, the ADIF scheme element is public, that means it is com-
pletely editable. Public Alfabet provides predefined standard ADIF schemes for special import actions, for
example in the context of interfaces with third party applications. These predefined ADIF schemes are ei-
ther private, that means that they cannot be changed at all, or protected, which means that you can edit
only a subset of the attributes of the preconfigured child elements of the ADIF scheme. It is possible to add
new ADIF elements to protected ADIF schemes. The ADIF elements added by the customer are public and
completely editable. Private and protected ADIF scheme have a lock symbol indicating their editability sta-
tus. The lock is orange for protected ADIF schemes and red for private ADIF schemes. Within a protected
ADIF scheme, editability of the attributes is visible in the attribute windows of the child elements only. De-
activated attributes are displayed in grey.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 30

 FIGURE: Private, protected and public ADIF schemes in the ADIF Explorer

Copying or Moving ADIF Scheme Elements

The context menu of the nodes in the explorer also includes a copy and paste functionality to reuse already
configured elements in another context.

Instead of copying elements you can also move the elements to another location using cut and paste.

1) In the explorer, right-click the element that you want to re-use and select Copy to copy it to
another element or Cut to move it to another element.

2) In the explorer, right-click the parent element that you want to add the copied element as child
element to and select Paste. The element is copied to the new location with the name <old
name>_1.

3) Optionally, click the added element in the explorer and change the Name attribute in the property
window.

Please note that this behaviour does not apply to copying of SQL commands into other SQL com-
mands. If you try to copy an SQL command into another SQL command, the current SQL com-
mand is overwritten instead of adding the copied SQL command as child element. To copy an SQL
command into another SQL command, add a new subordinate SQL command to the target parent
SQL command and paste the copied SQL command into the newly created subordinate SQL com-
mand.

Changing the Order of Child Elements of an ADIF Scheme Element

Elements of an ADIF scheme are executed in the configured order. You can change the order of execution
of the child elements within a node of the ADIF configuration interface explorer by changing the order of
nodes.

The following exceptions to the general mechanism apply:

• The mechanism for changing the sort order is the same for all nodes with the exception of
the child nodes in the sub-folders Relations and Indexes of ADIF import entries.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 31

• The sort order of sub-folders for SQL commands or attribute definitions in an ADIF import
or export entry cannot be changed.

To change the order of sub-nodes in an ADIF scheme, an import or export set, or of one of the folders for
SQL commands:

1) Click the node for which you want to change the order of child elements.

2) In the attribute section, click the attribute that you want to sort and click the Browse button to
open the editor that allows sorting. The following attributes allow sorting:

• ADIF import scheme and ADIF export scheme nodes: Items attribute

• Import set and export set nodes: Entries attribute.

• Attributes folder of import entries: Attributes attribute.

• SQL Commands - < ActionType > folder: Sub Commands attribute.

An editor opens containing a list of the child nodes.

3) Click one of the child nodes in the list and click the Up/Down buttons in the upper-right corner
to move the selected element up or down in the list. Sort all child nodes as needed.

Alternatively, you can select the Sorted checkbox in the lower-left corner to sort all ele-
ments alphabetically.

4) Click OK to save your changes. The order of child nodes in the explorer tree changes according to
your settings.

To change the order of sub-nodes in the Relations or Indexes folder of an ADIF import entry:

1) In the explorer, expand the folder for which you want to change the sort order of child nodes.

2) Click the child node that you want to move within the folder and drag it to the new position.

Deleting ADIF Scheme Elements

You can delete either complete ADIF schemes or elements of ADIF schemes. If you delete a node from the
explorer, all sub-nodes will also be deleted.

To delete an ADIF scheme:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 32

1) In the explorer, right-click the ADIF scheme that you want to delete and select Show Usage. A new
window opens that lists all event templates and buttons configured to trigger the execution of the
ADIF scheme.

2) If the list displays any usage of the ADIF scheme, remove the configurations using the ADIF
scheme prior to deleting the ADIF scheme.

3) In the explorer, right-click the ADIF scheme and select Delete. The element and all its sub-
elements are deleted.

To delete an ADIF scheme element:

1) In the explorer, right-click the ADIF scheme element that you want to delete and select Delete.

Structuring ADIF Schemes in Groups

The ADIF configuration interface allows you to structure ADIF schemes in group nodes. These elements are
not part of the ADIF XML specification but are empty explorer nodes used to visually structure the ADIF
scheme definitions.

A group is created by adding at least one ADIF scheme to the group:

1) In the ADIF explorer, select one of the ADIF schemes that you want to add to the new group.

2) In the attribute window of the ADIF scheme, enter the name of the group to the attribute Group. A
new group node with the specified name is created in the explorer as parent element of the
selected ADIF scheme.

3) You can now do any of the following:

• To add another already existent ADIF scheme to the group, set the Group attribute of the
ADIF scheme to the name of the existing group.

• To add a new ADIF scheme to the group, right-click the group node and select either Create
Import Scheme or Create Export Scheme.

• To move an ADIF scheme to the root level of the hierarchy, delete the group name from the
Group attribute.

• To move an ADIF scheme to another group, alter the group name in the Group attribute of the
scheme. The target group can either be an existing group or a new name that leads to the
creation of a new group in the explorer.

• To delete a group, alter the Group attribute of all ADIF schemes in the group. A group node
exists as long as it is defined in one of the ADIF schemes.

Defining SQL Queries for SQL Commands

ADIF import and export schemes are mainly configured via SQL queries. The queries are defined in the Text

attribute of SQL command elements within the ADIF scheme. If you click the Browse button in the field
for the Text attribute, a text editor opens that allows you to define the query.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 33

Defining SQL Queries for Different Database Servers in One SQL Command

The SQL syntax depends on the database server that the query is to be executed on. You might want to ex-
ecute an ADIF scheme on databases located on either a Microsoft SQL Server or an Oracle database server.
For this situation, you can define the query for an SQL command in different syntaxes within the same ADIF
scheme. Each version of the defined query must start with the name of the server type in a comment (a
separate line starting with two dashes and a whitespace).

Allowed server type definitions are:

• SQLSERVER

• ORACLE

For example, a query defined for execution on either a Microsoft SQL Server or an Oracle data-
base server:

-- SQLSERVER

UPDATE TMP_TABLE SET TMP_TABLE.ATTR1 = APPLICATION.ATTR2 FROM
APPLICATION WHERE APPLICATION.REFSTR = TMP_TABLE.REFSTR

-- ORACLE

UPDATE TMP_TABLE SET (TMP_TABLE.ATTR1, TMP_TABLE.ATTR2) = (SELECT
ATTR1, ATTR2 FROM APPLICATION WHERE TMP_TABLE.REFSTR =
APPLICATION.REFTR)

Help for Defining SQL Queries

The text editor for the definition of SQL queries in the ADIF configuration interface offers help for the defi-
nition of the SQL query in separate tabs:

• References to other object classes

When you first open the text editor, a tab AdminDesktop is displayed. The object class AdminDesktop is
the first class in alphabetical order in the Alfabet meta-model. In the Select Class field, select the object
class whose references to other object classes you want to see. A new tab will open with the name of the
selected object class. The tab displays a graphic showing the relationships between the selected object
class and other object classes.

The selected object is displayed in the centre of the graphic. On the left, all object classes are listed that
reference the selected object class via one or multiple of their properties. The property that establishes the
reference is displayed in a white box between the two classes. On the right, all properties of the selected
class are displayed in a white box that store references to other object classes. The target classes are listed
in the blue boxes on the right.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 34

When you double-click any referenced object class in the graphic, a new tab will open that displays the ref-
erences of the selected object class to other object classes.

• Object class documentation

When you open the [text] tab and select an object class in the Select Class field, the help document pro-
vided for the object class is displayed. The documentation includes a description of the purpose of the ob-
ject class and of all the properties of the object class and lists all relevant attributes in a table. Additionally,
information is provided about class dependencies based on database triggers. The documentation also in-
cludes the rules that define which dependent objects are deleted when an object of the selected class is
deleted.

The Meta-Model Sub-Tree of the ADIF Explorer

The Meta-Model sub-tree of the ADIF explorer provides information about the Alfabet meta-model that
may be useful during configuration of the ADIF interface. The Meta-Model explorer nodes has two sub-
nodes: ENUMERATIONS and Class Model.

ENUMERATIONS

The ENUMERATIONS sub-tree lists all currently configured enumerations. If a property is based on an enu-
meration, you can check which input values are permissible for the properties by clicking on the enumera-

tion in the explorer and clicking the Browse button for the Items attribute. A text editor opens that
lists each permissible value in a separate row.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 35

 FIGURE: Permissible values for properties based on the enumeration ApplicationType

Class Model

The Class Model sub-tree lists all classes of the Alfabet meta-model. The classes are structured according
to their use in the application. The classes listed in the SEMANTICCLASS folder are relevant for ADIF. The

SEMANTICCLASS folder has the following sub-folders defined:

• ALFA_QUESTIONARY: Customer defined, temporary classes that are relevant for data collection

via the Questionnaire capability.

• Artifact: Classes used to store data about the customer’s IT infrastructure. All Artifact classes

that can have a responsible user defined are listed in the sub-folder ArtifactAuthorized of the
Artifact folder.

• ITClass: Object classes supporting functionality. This includes, for example, the class TimeStatus

that is used to store the lifecycle of objects or the class RoleType that is used to store information
about which roles a user can have with regard to an object.

 FIGURE: Class Model explorer with the folder SEMANTICCLASS expanded

The following information about each object class is available via the Class Model explorer:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 36

• Object class attributes

When you click an object class in the explorer, the attributes of the object class are listed in the attribute
section on the right of the explorer.

Please note that object classes having the attribute Automatically Managed set to true
are object classes that shall only be changed by mechanisms triggered by the Alfabet
software components and must not be changed by ADIF import or any third party com-
ponent.

• Object class properties

When you expand an object class node in the explorer, a folder PROPERTIES is displayed. When you expand
the PROPERTIES node, you can see the properties of the object class listed in the explorer. Mandatory
properties are highlighted in yellow and written in red letters. When you click a property node, the attributes
of the property are listed in the attribute section to the right of the explorer.

The property Name of the object classes listed under the Artifact node is inherited
from the Artifact parent class. It is marked as mandatory because it is mandatory for
most of the sub-ordinate object classes. The sub-ordinate classes inherit all attributes
of the parent class property. Therefore, the Name attribute is also marked as mandatory
for the few subordinate classes that do not require a Name attribute.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 37

• References to other object classes

When you right-click an object class in the explorer and select Show Class Navigator, a new window opens
between the explorer pane and the attribute window. The relation of the selected object class to other ob-
ject classes via references is displayed in a graphic.

The selected object is displayed in the centre of the graphic. On the left, all object classes are listed that
reference the selected object class via one or multiple of their properties. The property that establishes the
reference is displayed in a white box between the two classes. On the right, all properties of the selected
class are displayed in a white box that store references to other object classes. The target classes are listed
in the blue boxes on the right.

• Object class documentation

When you right-click an object class in the explorer and select Show Class Documentation, a new window
opens between the explorer pane and the attribute window. The help document provided for the class is
displayed. The documentation includes a description of the purpose of the object class and of all the prop-
erties of the object class and lists all relevant attributes in a table. Additionally, information is provided
about class dependencies based on database triggers. The documentation also includes the rules that de-
fine which dependent objects are deleted when an object of the selected class is deleted.

Configuring ADIF via XML Editing

The configuration of the ADIF scheme is XML based. Instead of configuring ADIF schemes in the ADIF or
Alfabet Expand user interface, the schemes can be created or edited in an XML editor. The ADIF explorer
tree offers a means to open the scheme in an internal editor that provides help and debugging functional-
ity. Alternatively, you can export any scheme and edit it in any standard XML editor or create a scheme
from scratch in an XML editor and import it into the ADIF user interface.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 38

Internal XML Editor

To open the ADIF scheme XML object in the internal XML editor of the ADIF user interface:

1) In the ADIF explorer, right-click an ADIF scheme and select Open XML Editor. The XML editor
opens in a new window.

The ADIF internal XML editor provides various help functionalities for the creation of an ADIF scheme:

• Help for data entry:

When you write a < into the editor, a list of elements that are allowed at this position of the XML code is dis-
played. You can double-click an element name in the list to add it to the code. When you add a whitespace
after an element name, a list of attributes allowed for the element are displayed. You can add an attribute
by double-clicking the attribute in the list.

• Hierarchy information for elements and attributes:

If you move the cursor over an element name, the parent hierarchy for the element will be displayed. If you
move the cursor over an attribute name, the name of the element that the attribute is defined for will be
displayed.

• Error messages in case of incorrect or incomplete elements:

Error messages are displayed below the edit pane when you add an element that is not allowed in the XML
schema or at the position you added to, or when attributes or an attribute value do not correspond to the
schema specification. The error messages provide information about the line and column position of the
error and about the kind of error that has occurred.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 39

External Editors

You can create and edit ADIF schemes in any text editor.

The edited ADIF schemes can either be uploaded to the database via the ADIF configuration user interface
or provided via the local file system. The ADIF console application used to start the import or export pro-
cesses works with both an ADIF scheme provided via XML file or with an ADIF scheme that is part of the
target/source database.

You can export a single ADIF scheme configured via the ADIF configuration interface to an XML file for edit-
ing in an external XML editor.

To save ADIF schemes in an XML file.:

1) In the ADIF explorer, right-click the ADIF scheme that you want to export.

2) In the context menu, select Save as.

3) In the explorer that opens, enter a name for the XML file and store it at the desired location.

Completed ADIF schemes that are configured in an XML file can be uploaded to the database as follows:

1) In the ADIF explorer, right-click the root node ADIF Schemes.

2) In the context menu, select one of the following:

• Merge from Files: New schemes are added to the database and schemes that are available in
both the XML file and the database are overwritten in the database with the ADIF schemes in
the file. Schemes that are only available in the database are not altered. During the merge
action, the ADIF schemes are mapped according to their Name attribute.

• Replace from File: All ADIF schemes in the database are deleted and the ADIF schemes in the
XML file are then uploaded to the database.

3) Select the file in the explorer that opens. For the Merge from Files option multiple files located in
the same folder can be selected. For the Replace from File option only one file can be selected.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 40

Chapter 4: Configuring Data Import with ADIF

This chapter guides you through the process of importing data to the Alfabet database via the ADIF inter-
face.

Data Processing During Import

Data import can include data from database tables, Microsoft® Excel® files, comma-separated data format
files (.csv or.txt), JSON files, and XML files. All files included in the import must be provided in a ZIP file. Im-
port can be performed as single import process based on multiple import sources.

ZIP files are checked during upload for the size of content after decompression. The file will not
be uploaded if the decompressed size is more than 100 percent of the compressed size or if stor-
ing the file content on the local drive would result in less than 1 GB free space remaining or if any
deviations from normal compression mechanisms are detected.

During import, the external data must be mapped to the Alfabet database:

• The external data table must be mapped to the correct database table in the Alfabet database.

• The external data values must be mapped to the correct columns in the Alfabet database table.

• The data records in the external data table must be mapped to the correct rows in the existing
Alfabet database table. In most cases, the Alfabet database already contains data. In this case. The
external data should not simply be added to the Alfabet database table. Object data should be
updated if the object already exists and new records should only be written to the database for new
objects. It may even be necessary to delete existing data during import.

The ADIF import mechanism targets the structure and uniqueness constraints of the Alfabet database. The
information about the external data must be specified by the customer to allow the ADIF import mecha-
nisms to map the data. Customers can configure the import via SQL.

The structure of the external data can vary considerably from the structure of the Alfabet database tables.
In order to keep the import process as flexible as possible, the ADIF import mechanism performs the import
in two steps:

• Step 1: Temporary tables are built based on the data in the input file / external database table. The
temporary database table can be altered and completed via SQL commands before beginning the
second import step.

• Step 2: Data from the temporary tables is written to the Alfabet database tables for object classes in
the Alfabet meta-model.

This mechanism ensures a high degree of flexibility. You can define multiple temporary tables with a differ-
ent structure and different content from your external data (and even define temporary tables from the
content of already generated temporary tables) in order to restructure the data according to your needs.
The Alfabet database tables are then altered on the basis of the content of the temporary tables rather
than the content of the original external data.

After the import is complete, the temporary tables will be deleted from the Alfabet database.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 41

Execution Steps of the Import Process

Import is triggered by the ADIF import schemes that have been configured by the customer via SQL com-
mands. An ADIF import scheme can trigger import from multiple database tables or files of one or more file
formats.

The import process is started via the ADIF debugger or via the ADIF console application.

The following process is executed when the ADIF import is started:

1) If the data is imported from one or more files, the import files (which must be located in a ZIP file)
will be uploaded to the Alfabet database.

2) Validation of the ADIF import scheme is performed. Import will be stopped if validation fails.

3) A temporary directory is created on the server side for log files and import files.

4) The ZIP file with import files is uploaded to the temporary directory and unzipped.

5) Command line arguments are written to the Alfabet database. If the import is triggered by an ADIF
import scheme located in an XML file, the ADIF import scheme is also written to the database.

6) Temporary tables specified in all import specifications in the ADIF import scheme are written to the
database. Details are provided in this chapter.

7) The Alfabet database tables are updated with data from the temporary database tables as defined
in the import specifications in the ADIF import scheme. Details are provided in this chapter.

8) All specified workflows are started.

9) Log information about the import process is uploaded to the ADIF_SYS folder in the Document
Explorer in the Alfabet database.

10) The temporary directory on the server side (that was created prior to import execution) and all
content in the temporary directory is deleted.

11) If not otherwise specified in the ADIF import scheme, all temporary tables created during import
will be dropped.

12) If import is started via the ADIF console application, the log file content is downloaded to the
console log file.

The following section describes how to configure different import features within the ADIF import scheme.
Details about the processes executed to perform the import steps described above and the order of execu-
tion of different ADIF scheme elements processed during import is provided with the description of the var-
ious import steps.

Preparing Data For Import

Data can be imported from the following data formats:

• XML files

• JSON files

• Microsoft® Excel files (.xls and.xlsx)

• CSV files

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 42

• external database tables

ADIF is highly flexible concerning the translation of external data structures to fit the Alfabet meta-model.
Nevertheless, to ensure that data can be read properly during the import process, the external data that is
used for import must adhere to the following requirements.

The following sections list the specific requirements for all the individual import file formats.

Microsoft® Excel® Files

Import can be performed from.xls and.xlsx files. The following rules apply to both file formats.

• All data must be available in the first tab of the Microsoft® Excel® file. All other tabs are ignored
during import.

• If the data contains a header, the header cells must only contain alphanumeric data without any
special characters.

• The table must have a flat structure.

• The allowed data formats are numbers, strings and dates. Any special characters, including NULL
values (hexadecimal value 0x00) cannot be imported.

• The table must not contain formulas.

XML Files

• The file must contain valid XML definitions.

• The following encoding is allowed:

• ASCII

• UTF7

• UTF8

• UTF32

• Unicode

• Text content of XML elements can only be interpreted by the import mechanism when the XML
element containing the text has no own attributes and is a child element of an XML element
containing attributes.

• If the XML file refers to a DTD file, the DTD file must be included in the import ZIP file when importing
the XML file.

• Strings containing line breaks must be written in CDATA elements or the line breaks must be
escaped according to XML rules.

• Data has to be XML compliant to be imported. All characters that are not XML compliant will be
replaced automatically with whitespaces during import.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 43

JSON Files

• The file extension must be .json.

Comma-Separated Formats (*.csv)

Import can be performed from.csv and.txt files. The following rules apply to both file formats.

• The data must represent a table with each row written in a new line. Each column within a row must
be separated with a column separator. Each data record (row) must have the same number of
columns.

• The following encoding is allowed:

• ASCII

• UTF7

• UTF8

• UTF32

• Unicode

• The file size must not exceed the maximum number of datasets that can be processed with
Microsoft® Excel® in a single data sheet. The same component is used for importing data from
Microsoft Excel and CSV files and this component has an integral processing limit that corresponds
to the limits defined for Microsoft Excel.

External Databases

Import can be performed from the following types of databases:

• Microsoft® SQL

• Oracle®

• Microsoft® Access

• PostgreSQL 9.1

• LDAP tables

You must ensure that access permissions of the external database allow the data to be read by the ADIF
process.

A connection string for connection to the database must be added to the configuration and should be pro-
vided prior to configuration.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 44

Conceptualizing Data Import

The first and most important step for data import via ADIF is the conceptualization of the data import. You
should clarify the following before configuring the ADIF import scheme:

• Which data shall be imported?

• How can this data be mapped to the Alfabet meta-model?

• Is configuration of the Alfabet meta-model required? For example, are custom properties required
for object classes because the data that shall be imported is not represented by the standard
properties of the Alfabet meta-model?

• What are the data formats of the import data and do they match the data formats of the Alfabet
database tables?

• Are all mandatory properties for the Alfabet object class included in the import of new data records?

• Does my data include unique attributes that allow the data to be mapped to existing Alfabet
database tables?

• Do my data import formats adhere to the rules described in the section Preparing Data For Import?

• If the import data includes relations to other objects, do the database table for the related object
classes require update prior to import?

• What intermittent steps using temporary tables are necessary to import the data successfully to the
Alfabet database?

It is recommended that you provide a thorough concept in written form to the person configuring the ADIF
import scheme.

Configuring the ADIF Import Scheme

An ADIF import scheme is an XML object that can be edited either in an XML editor or in the ADIF configura-
tion interface provided as part of the configuration tool Alfabet Expand. In the interface, the XML elements
are displayed as nodes in the explorer, while the attributes of an element are displayed in the attribute win-
dow to the right of the explorer.

All information and commands required to import data from the Alfabet database are defined via the ele-
ments of the ADIF import scheme. The elements must follow a defined sequence that is given by an XSD
scheme. In the ADIF explorer, the context menu options available for the import scheme elements guide
you through the creation of all required elements. For example, the context menu displays only the options
to create permissible sub-elements for an import scheme element. When you define the ADIF import
scheme in an XML editor, you must consult the XSD scheme for information about the permissible se-
quence of objects.

The following elements are part of the ADIF import scheme:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 45

XML Element
Name

Caption in
the ADIF In-
terface

Purpose

ADIF_Import
Scheme

Import
Scheme

Element for the configuration of basic overall import execution pa-
rameters.

Parameter Parameter Element defining a parameter definition that may be used in all que-
ries within the ADIF import scheme as variable that is filled with a
value defined when executing the ADIF import.

This element is not visible in ADIF import schemes defined prior to
Alfabet 10.4 for that the Parameters Backward Compatibility
Mode attribute is set to True.

XmlImportSet XML Import
Set / JSON
Import Set

Element defining a JSON or XML file structure for data import from
XML files.

For import from JSON files, the option to create a JSON
Import set is available for backwards compatibility rea-
sons only. For import from JSON, an entry for hierarchical
JSON should be created instead.

FileImportSet File Import
Set

Structuring element that is a container for elements defining the
import from Microsoft® Excel® files or CSV files.

DBImportSet DB Import
Set

Element defining the connection to an external database.

ADImportSet LDAP Import
Set

Element defining the connection to an external LDAP table.

ImportEntry Entry Element defining the import from one external database table or file
to the Alfabet database.

Attribute Attribute Sub-element of ImportEntry elements for the definition of the
mapping of external data to a database table column in the Alfabet
database.

Relation Relation Sub-element of ImportEntry elements for the definition of a rela-
tion between objects that shall be created during import.

Index Index Sub-element of ImportEntry elements for the definition of an in-
dex to be created during import.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 46

XML Element
Name

Caption in
the ADIF In-
terface

Purpose

SQLCommand SQL Com-
mand

Sub-element of ImportEntry elements for the definition of SQL
commands to be executed during import.

AlfaMethod Sub-element of ImportEntry elements to assign custom code to
the entry. AlfaMethod elements are only relevant if custom code
was developed by Software AG for special customer requirements.
Information about the configuration is provided individually with the
custom code.

Creating an ADIF Import Scheme

The following describes the creation and editing of an import scheme via the ADIF configuration interface.
Please note that only the set of the attributes required for the task that is being described are explained.

To create a new ADIF import scheme:

1) In the explorer, right-click the ADIF Schemes root node and select Create Import Scheme. The
new import scheme is added to the explorer. The attribute window of the new import scheme is
displayed on the right.

2) In the attribute window, set the following attributes for the ADIF import scheme:

• Name: Enter a unique name. The name is used to identify the ADIF import scheme in technical
processes. It must be unique and should not contain white spaces or special characters.

• Caption: Enter a meaningful and unique caption. The caption is used to identify the ADIF
import scheme in the Alfabet user interface in the ADIF Jobs Administration and My ADIF
Jobs functionalities.

• Description: Enter a meaningful and short description of the result of the ADIF import. The
description is displayed in the Alfabet user interface in the ADIF Jobs Administration and
My ADIF Jobs functionalities in the preview window for an ADIF scheme.

• Commit After Run : If set to True, the result of the data import is written persistently to the
Alfabet database. If set to False, the import process will be rolled back after execution and no
changes will be written to the database. Configuration of the automatic start of workflows
during import is ignored when Commit After Run is set to False. It is recommended that you
set Commit After Run to False for a new import scheme to allow debugging without the risk
of corrupting the database. After the successful testing of the data import and verification
that the resulting changes to the Alfabet database are as expected, you can reset the
Commit After Run attribute to True to perform regular data import.

Please note the following:

• Setting the Commit After Run attribute rolls back all changes to data
records in existing tables caused by DML statements. The creation or deletion
of tables is not included in the roll back. For example, if you test an ADIF

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 47

scheme that is configured to persistently write temporary tables to the
database, these temporary tables will be created persistently even if Commit
After Run is set to False. SQL commands of the type OnActivate are also
excluded from roll back.

• When new objects are created during an ADIF import job, the data bind
mechanism assigns REFSTR values for the new objects. When Commit After
Run is set to False, the objects are not created in the database, but
nevertheless the REFSTR values are regarded as in use and will not be used
for data bind in the next ADIF run unless the Alfabet Server or Alfabet Expand
application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the option
Commit After Run is set to False for the import scheme.

• Drop Temp Tables : If set to True, all temporary tables are dropped after import. Only the
changes to the Alfabet database are stored persistently. If set to False, the temporary tables
are kept in the database after import is finished. Storing temporary tables persistently is only
required for special import/export cycles designed for data manipulation that require input
from the temporary tables of a previously set import. In most cases, setting this attribute to
True is recommended to clean the database of data that is not part of the Alfabet meta-
model.

• File Post Action: This attribute defines the handling of import files after import. Select one of
the following:

• None: Import files are not altered.

• Delete: Import files are deleted after import. If import is based on a *.zip file, the *.zip
file is deleted. If files are read from a directory, all files in the specified import directory
will be deleted.

• RenameUsingTimeStamp: Import files are renamed after import. If import is based on a
*.zip file, the *.zip file is renamed. If the import reads files from a directory, all files in
the specified import directory are renamed. The renamed files will have a timestamp
added to the file name and all letters of the file name will be changed to capital letters.

The RenameUsingTimeStamp parameter is ignored during debugging.

• Import File Required : Select True if your import scheme includes configurations for data
import from files. Set this parameter to False to import data from external databases or
Active Directories only or when defining import based on an assistant. Assistants are available
for pre-defining data import from external services in the scope of Alfabet integration
solutions. For more information, see Predefined ADIF Schemes.

• Block Processing: If a new object is created via the ADIF import and a default value is defined
for properties of the object class, the import mechanism checks whether the import includes
a value for the property. If no value is provided, the default value will be set. To enhance
performance and processing time of ADIF import jobs for very large-scale datasets (in excess
of 1 million records) in batch, the Block Processing attribute of the ADIF scheme can be set
to True. The block processing mechanism scans all object class properties for that no column
is defined in the temporary table of the import. If a default value is defined for the object class
property, an additional column will be added to the temporary table for this object class
property, returning the default value for each row. This will spare the import mechanism to

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 48

set the default value for each object separately. In addition, Block Processing improves
performance for rescanning back relations for imports that are including import of relations
with corresponding back relations in the target objects. Block Processing should only be
selected if the import dataset is very large and a number of object class properties for that no
value is provided via the imported data have a default value definition.

• Auto Run: If set to True, the ADIF scheme will be executed automatically after each update
of the Alfabet meta-model via an *.amm file or each restore of the database with an *.adb file.

Note the following:

• If the Auto Run attribute is set to True, the Import File Required attribute
must be set to False.

• If ADIF import schemes are executed automatically, no log files will be
generated. The ADIF scheme must be tested during configuration to ensure
that it is properly executed at runtime.

• The database connection is closed and re-opened before execution of an
auto-run. This may take some time.

For more information about the update of the meta-model and the restore of the
database, see the reference manual System Administration.

• Alfabet User Interface Behaviour: Select one of the following to define the availability of
the ADIF scheme in the Alfabet user interface:

• VisibleExecutable: The ADIF import can be triggered in the ADIF Job
Administration functionality and the success of the ADIF jobs executed with this ADIF
scheme can be controlled via the ADIF Job Administration and My ADIF Jobs
functionalities.

• VisibleNotExecutable: The success of the ADIF jobs executed with this ADIF
scheme can be controlled via the ADIF Job Administration and My ADIF Jobs
functionalities, but the ADIF import cannot be triggered via the Alfabet user interface.

• NotVisible: The ADIF scheme and the information about ADIF jobs executed with this
ADIF scheme are not visible in the ADIF Job Administration and My ADIF Jobs
functionalities. this is the default value for new ADIF import schemes.

For information about administration and execution of the ADIF scheme via the
ADIF Job Administration and My ADIF Jobs functionalities, see Executing and
Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities
in the Alfabet User Interface.

• Applicable for REST API: Set the attribute to True if the ADIF scheme shall be executed via a
RESTful service call to the endpoint adifimport of the Alfabet RESTful API either via a
RESTful service call from an external RESTful client or via an Alfabet event that is triggering
the execution of the ADIF scheme when a user enters or leaves a wizard or workflow step or
when an event for execution of a RESTful service call to a third party application is finished.

Execution of the ADIF scheme via the Alfabet RESTful API requires setup of the
RESTful services. For information about the requirements and the execution of the
service call, see the reference manual Alfabet RESTful API.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 49

For the additional configuration to implement execution of an event, see Configuring
Events.

• Group: The ADIF configuration interface allows you to structure ADIF schemes in group folder
nodes. These elements are not part of the ADIF XML specification but are empty explorer
nodes used to visually structure the ADIF scheme definitions in the explorer. Enter a name of
an existing group folder to add the ADIF scheme to the group or enter a new name to create a
new group folder node and add the ADIF scheme to the new group.

After creating the ADIF import scheme, you must now add import definitions to trigger import
from one or more import data formats to the import scheme. Proceed to the section Configuring
Import from Different External Source Formats to configure the import scheme.

Optionally, you can configure the following:

• Configuring Execution of the Import Scheme Dependent on Current Parameters

• Configuring SQL Commands for Optional Enhanced Import Features

• Configuring the Import Audit History

• Configuring the Automatic Start of Workflows During Import

• Configuring Logging Parameters

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 50

Configuring Import from Different External Source Formats

The import of data to a temporary table prior to the update of the Alfabet database tables divides the configuration issues in two parts. The configuration of how to
import data to the temporary tables (which depends on the different import formats) and the definition of mapping conditions to update data in the Alfabet database
tables (which is identical for all import formats).

For each import, you must specify the following:

ADIF
Scheme
Element

For Import from Database Tables For Import from Files (XLS,
XLSX, CSV, TXT)

For Import from XML For Import from JSON

Import Set

 / /

 /

The connection to the external da-
tabase must be defined in a data-

base import set or an LDAP im-

port set The import set is par-
ent to all other configuration ele-
ments for the import from that da-
tabase.

The specification of an import
set is not required.

Nevertheless, you can define file

import sets as structuring
elements containing, for exam-
ple, all import definitions for im-
port from the same file format or
for import regarding the same
task.

For each external XML file, an XML

import set must be added to
the import scheme. The import set
is parent to all import definitions for
XML elements in the file.

The specification of an import set is
not required.

For backward compatibility reasons
it is still possible to create an import
set for JSON import. This import did
not cover all use cases and was
therefore substituted by a direct
JSON import from an import entry.

Import En-

try

At least one import entry must be
added to the database import set
for each external database table
from which data shall be imported.

An import entry specifies import
between one external database ta-
ble and one Alfabet database table
only. If you want to import data

At least one import entry must
be added to a file import set or
directly to the ADIF import
scheme for each file from which
data shall be imported.

An import entry specifies import
between one external file and
one Alfabet database table only.

At least one import entry must be
added to the XML import set for
each XML element type in the XML
file that data shall be imported to.

An import entry specifies the import
between one XML element type and
one Alfabet database table only. If
you want to import data from one

At least one import entry must be
added to the ADIF import scheme via
the context menu option Create En-
try for Hierarchical JSON for each
file from which data shall be im-
ported. The resulting import entry
has a predefined temporary table
structure.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 51

ADIF
Scheme
Element

For Import from Database Tables For Import from Files (XLS,
XLSX, CSV, TXT)

For Import from XML For Import from JSON

from one external database table
to multiple Alfabet database tables,
you must specify multiple import
entries.

If you want to import data from
one external file to multiple
Alfabet database tables, you
must specify multiple import en-
tries.

XML element type to multiple
Alfabet database tables, you must
specify multiple import entries.

An import entry specifies import be-
tween one external file and one
Alfabet database table only. If you
want to import data from one exter-
nal file to multiple Alfabet database
tables, you must specify multiple im-
port entries.

Attribute

Relation

Index

Indicator

Role

SQL Com-

mand

The child elements of the import entry map the content of the external database table, the columns of the ex-
ternal Microsoft® Excel® table, and the comma- separated values in the comma-separated external file. Vari-
ous types of child elements are available to ease the mapping of data to Alfabet database columns, the crea-
tion of relations between objects, or the creation of an index. Mechanisms provided via the ADIF scheme or
the specification of SQL commands provide support for mapping records to already existing records of the
database tables.

To learn how external data is interpreted during import and how the import set must be defined, proceed to the section relevant for your import format:

• Defining Data Upload from an External Database in a Database Import Set

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 52

• Defining Data Upload from an LDAP Table in an LDAP Import Set

• Defining Data Import From XML Files in an XML Import Set

• Defining Data Import from Microsoft® Excel Files and Comma-Separated File Formats

Defining Data Upload from an External Database in a Database Import Set

If you want to import data from an external database, a connection to the external database must be established to retrieve the data. The ADIF import process does
not read the data directly from the database tables of the external database. Data must be uploaded via a customer-defined query executed on the external database.
The data set resulting from the query is the external data imported via the ADIF import process.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 53

 FIGURE: Import of data from an external database

To configure data upload from the external database:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select Create DB Import Set. A new database import set is

added to the explorer with a default name for the database import set. Below the database import set , a folder is automatically added for the creation of
SQL commands that will be executed on activation of the database import set.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 54

2) In the attribute window of the database import set , specify the following attributes to configure the connection to the external database:

• Name: Enter a meaningful name for the database import set.

• Comments: Enter a comment that provides information about the functionality implemented within the database import set.

• Driver Type: Import can be performed from databases on Microsoft® SQL Servers®, Oracle® Database servers or Microsoft® Access databases. Select
the type of database server that the external database is located on:

• SqlServer for access to Microsoft SQL Server

• Oracle for access to Oracle

• Access for access to Microsoft Access via an OLE driver

• ODBC for access to Microsoft Access, Oracle® MySQL or PostgreSQL 9.1 via an ODBC driver

• Hadoop for access to Hadoop systems

• Driver Sub-Type : This attribute is only visible if SqlServer is selected in the Driver Type attribute. Select the driver that shall be used for the
connection to the Microsoft SQL Server:

• MSNetServer: The driver used in previous Alfabet releases. It is restricted to use with.NET Framework. This is the default value.

• MSSqlServer: A driver supporting both.NET Framework and.NET Core environments.

• Connection String: Enter the connection string required to connect to the external source. The connection string depends on the database server used.
It typically contains source location, user name, and other parameters relevant to the requirements of the database server.

It is recommended that you define the database login in the connection string via a user name and password. If Windows Authentication is
used for login and the ADIF Console Application is started with a remote alias, the connection to the database will only be successful if the
Alfabet Server is started with the same domain user name and access rights that are provided with the connection string.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 55

• Server variables can be used in the connection string. Server variables allow you to define all or part of the definition in the server alias

configuration of the Alfabet Server instead of directly defining it in the ADIF scheme. Use of server variables is useful, for example, when
using the configuration in a test and production environment with different external sources. The same external source definition can be
used in both environments. The server alias definition used in the test and production environment define the correct connection data
for the external source used in the respective environment. The use of server variables is described in the section Using Server Variables
in Web Link and Database Server-Related Specifications in the chapter Configuring Reports in the reference manual Configuring Alfabet
with Alfabet Expand.

• Command line parameters can be used as variables in the connection string.

ODBC can be used for connections to Microsoft Access or PostgreSQL 9.1 database servers. Please note, however, that performance will be
lower compared to native drivers and stored procedures are not supported.

The following are examples of connection strings for connections to different database servers.

Connection string for connection to a Microsoft SQL Server® with standard login:

Server=myServerAddress;Database=myDataBase;User Id=myUsername;Password=myPassword;

Connection string for direct connection to an Oracle® database server:

User Id=APP_ID;Password=*********;Direct=true;Data Source=servername;Port=Port;SID=orcl

Connection string for direct connection to an Oracle® databse server including the service name:

User Id=********;Password=*********;Server=ServerFQDN/IP;Unicode=True;Connection Timeout=60;Max Pool
Size=250;Direct=True;Service Name=ServiceName;Port=1521

Connection string for indirect connection to an Oracle® database server:

User Id=***;Password=*****;Server=orcl;Unicode=True;Connection Timeout=60;Max Pool Size=250

• Is Active : Select True to activate the execution of all import entries within the import set. Select False to deactivate the execution.

3) Right-click the database import set in the explorer and select Create Entry. A new import entry is added to the database import set.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 56

4) Right-click the SQL Commands - DataUpload folder below the import entry and select Create SQL Command. A new SQL command is added to the
folder.

5) Select the new SQL command in the explorer and set the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented by the SQL command.

• Command Type : Select DMLStatement in the drop-down list.

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the upload to be executed even if the SQL statement specified with the attribute Text results in an exception.
Select False if you do not want the upload to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL command.

• Text : Define an SQL query with a SELECT statement that returns a data set when executed on the external database. The resulting data set is uploaded

by ADIF as import data. Either write the SQL query directly in the attribute field or click the Browse button to open an editor for the definition of the
SQL query. Define the SQL query in the SQL Text tab of the editor.

The text editor for the definition of SQL queries in the ADIF configuration interface provides help for the definition of the SQL query in separate
tabs. For more information, see Defining SQL Queries for SQL Commands in the section Configuring ADIF Schemes.

If you want to configure complex import scenarios, you can add additional SQL commands to the import entry that are executed prior to or
after data upload. For more information about the definition of additional SQL commands within an import entry, see Configuring SQL Com-
mands for Optional Enhanced Import Features.

6) Define the import of the data set created via the SQL command for data upload in the import entry. For information about the required configuration, see
Defining Import of External Data in an Import Entry.

7) If more than one data set shall be uploaded from the external database, repeat steps 3.) to 6.).

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 57

After creating the database import set, you must now add import entries that map the data in the external database to the data in the Alfabet database. For
more information, see Defining Import of External Data in an Import Entry.

Optionally, you can define SQL commands that allow you to deactivate this part of the import scheme if specified preconditions have been fulfilled. For
more information, see Configuring Execution of the Import Scheme Dependent on Current Parameters.

Defining Data Upload from an LDAP Table in an LDAP Import Set

If you want to import data from an external LDAP table (for example, an Microsoft® Active Directory®), a connection to the LDAP table must be established to retrieve
the data. The ADIF import process does not read the data directly from the LDAP tables. Instead, data must be uploaded via a customer-defined LDAP search filter
executed on the LDAP table. The data set resulting from the search filter is the external data imported via the ADIF import process.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 58

 FIGURE: Import of data from an external LDAP table

To configure data upload from the LDAP table:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select Create LDAP Import Set. A new LDAP import set is

added to the explorer. A default name is provided for the LDAP import set. Below the LDAP import set , a folder is available for the creation of SQL
commands to be executed on activation of the LDAP import set.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 59

2) In the attribute window of the LDAP import set , set the following attributes to configure the connection to the LDAP table:

• Name: Enter a meaningful name for the LDAP import set.

• Comments: Enter a comment that provides information about the functionality implemented within the LDAP import set.

• Authentication Method: In the drop-down list, select the authentication method required for login to the external LDAP table:

• None: Basic authentication (simple bind) is used in the LDAP provider.

• Secure: Select if the WinNT provider uses NTLM to authenticate the client. Active Directory Domain Services uses Kerberos and possibly NTMLM
to authenticate the client. When the user name and password are a null reference (Nothing in Visual Basic), ADSI binds to the object using the
security context of the calling thread. This is either the security context of the user account under which the application runs or of the client user
account that the calling thread impersonates.

• Encryption: Attaches a cryptographic signature to the message that both identifies the sender and ensures that the message has not been
modified in transit.

• SecureSocketsLayer: Attaches a cryptographic signature to the message that both identifies the sender and ensures that the message has not
been modified in transit. Active Directory Domain Services require the Certificate Server to be installed to support Secure Sockets Layer (SSL)
encryption.

• Anonymous: No authentication is performed.

• FastBind: Specifies that ADSI will not attempt to query the Active Directory Domain Services objectClass property. Therefore, only the base
interfaces that are supported by all ADSI objects will be exposed. Other interfaces that the object supports will not be available. A user can use
this option to boost the performance in a series of object manipulations that involve only methods of the base interfaces. However, ADSI does not
verify if any of the request objects actually exist on the server.

• Signing: Verifies data integrity to ensure that the data received is the same as the data sent. The
System.DirectroyServices.AuthenticationTypes.Secure flag must also be set to use signing.

• Sealing: Encrypts data using Kerberos. The System.DirectoryServices.AuthenticationTypes.Secure flag must also be set to use sealing.

• Delegation: Enables Active Directory Services Interface (ADSI) to delegate the user’s security context, which is necessary for moving objects
across domains.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 60

• ServerBind: If your ADsPath includes a server name, specify this flag when using the LDAP provider. Do not use this flag for paths that include a
domain name or for serverless paths. Specifying a server name without also specifying this flag results in unnecessary network traffic.

• Login Name: If applicable, enter the login name required for login to the external LDAP table. A server variable can be used to define the login name as a
link to information stored encrypted in the server alias configuration of the Alfabet Server. For information on the definition and specification of server
variables, see Defining Connections Based On Server Variables in the reference manual System Administration.

• Login Password: If applicable, enter the login password required for login to the external LDAP table. A server variable can be used to define the login
password as a link to information stored encrypted in the server alias configuration of the Alfabet Server. For information on the definition and
specification of server variables, see Defining Connections Based On Server Variables in the reference manual System Administration.

• Connection String: Enter the connection string required to connect to the external LDAP table. The connection string depends on the configuration of
the external LDAP table.

It is recommended that you define the database login in the connection string via a user name and password. If Windows Authentication is
used for login and the ADIF Console Application is started with a remote alias, the connection to the database will only be successful if the
Alfabet Server is started with the same domain user name and access rights that are provided with the connection string.

Server variables can be used in the connection string. Server variables allow you to define all or part of the definition in the server alias config-
uration of the Alfabet Server instead of directly defining it in the ADIF scheme. Use of server variables is useful, for example, when using the
configuration in a test and production environment with different external sources. The same external source definition can be used in both
environments. The server alias definition used in the test and production environment define the correct connection data for the external
source used in the respective environment. see Defining Connections Based On Server Variables in the reference manual System Administra-
tion.

• Is Active : Select True to activate the execution of all import entries within the import set. Select False to deactivate the execution.

3) Right-click the LDAP import set in the explorer and select Create Entry. A new import entry is added to the LDAP import set.

4) Right-click the SQL Commands - DataUpload folder in the import set and select Create SQL Command. A new SQL command is added to the folder.

5) Select the new SQL command in the explorer and set the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented by the SQL command.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 61

• Command Type : Select DMLStatement in the drop-down list.

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the upload to be executed even if the SQL statement specified with the attribute Text results in an exception.
Select False if you do not want the upload to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL command.

• Text: Define a LDAP search filter as defined in RFC 2254 that returns a data set when executed on the LDAP table. The resulting data set is uploaded by

ADIF as import data. Either write the query directly in the attribute field or click the Browse button to open an editor for the definition of the query in
the SQL Text tab of the editor.

The text editor for the definition of queries in the ADIF configuration interface provides help to define the query in separate tabs. For more
information, see Defining SQL Queries for SQL Commands in the section Configuring ADIF Schemes.

If you want to configure complex import scenarios, you can add additional SQL commands to the import entry that are executed prior to or
after data upload. For more information about the definition of additional SQL commands within an import entry, see Configuring SQL Com-
mands for Optional Enhanced Import Features.

6) Define the import of the data set created via the SQL command for data upload in the import set. For information about the required configuration, see
Defining Import of External Data in an Import Entry.

7) If more than one data set shall be uploaded from the external database, repeat steps 3.) to 6.).

After creating the LDAP import set, you must now add import entries that map the data in the LDAP table to the data in the Alfabet database. For more
information, see Defining Import of External Data in an Import Entry.

Optionally, you can define SQL commands that allow you to deactivate this part of the import scheme if specified preconditions have been fulfilled.

For more information see Configuring the Conditional Execution of Parts of the Import Scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 62

Defining Data Import From XML Files in an XML Import Set

When importing data from an XML file, the structure of the XML file must be translated to the database table structure. XML files are hierarchically structured and in
most cases, more than one table must be created to store the data provided in the XML. Therefore the import from a single XML file requires an import set to be added
to the ADIF import scheme as a container for all temporary tables that need to be created and filled with the data from the XML file.

As a general rule, at least one temporary table needs to be created for each XML element type that matches the following conditions:

• The XML element type contains XML attributes

• The XML element type contains child elements without XML attributes and/or text content.

For each temporary table to be defined, an element Import Entry must be added to the XML Import Set . The import table name is the name of the XML ele-
ment.

The columns of the temporary table must be mapped to the content of the XML element. The temporary table definition must include one child Attribute element

for the configuration of a database column. The attribute Import Column of the Attribute element defines which data from the XML element is written to the
column of the temporary table. In the import entry, you must define:

• one Attribute element for each XML attribute of the import XML element. The name of the XML attribute must be specified in the Import Column

• one Attribute element for the text content in the import XML element. <name of the XML element>_text must be specified in the Import Column

• one Attribute element for each child XML element without XML attributes (but with text content) included in the import XML element. The name of the
child XML element must be specified in the Import Column

When text written to an XML element contains or is completely wrapped into elements, for example included for formatting, the text cannot be read during
import. In the following code, for example, the status of the application can not be imported from the text because the status Retired is written in a child
XML element with its own XML attributes:

<Application Name="App1">Active</Application>

<Application Name="App2">Planned</Application>

<Application Name="App3"><Style Format="Bold">Retired</Style></Application>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 63

Additionally, columns can be added to the temporary tables that define the hierarchy of the XML elements in the XML file. The import mechanism generates an ID for
all XML elements in the hierarchy. To map child XML elements to their respective parents, the following configuration is required:

• In the Import Entry defining the temporary table of the parent XML element, an Attribute element must be added. The value for Import Column must be
<element name>_Id.

• In the Import Entry defining the temporary table of the child XML element, an Attribute element must be added. The value for Import Column defined as
<parent element name>_Id.

The hierarchy information is usually not imported to object class properties in the target Alfabet database. The hierarchy information is required to be available in the
temporary tables in order to identify the parent XML element in SQL commands that are defined for the import of relations between objects.

For more information, see Import of Reference Arrays with Reference Support Set to True in the section Defining Relations.

For example, data about devices and their assignment to device groups shall be imported from the following XML file:

<Groups>

<DeviceGroup Name="ImportGroup1">

<Description>Server hosts</Description>

<Device Name="ImportDevice1" Version="1.0" StartDate="2011.01.01" EndDate="2015.01.05"/>

<Device Name="ImportDevice2" Version="1.2" StartDate="2011.08.24" EndDate="2014.12.31"/>

</DeviceGroup>

<DeviceGroup Name="ImportGroup2">

<Description>Web relevant devices</Description>

<Device Name="Backup Server" Version="2.2.1" StartDate="2009.09.30" EndDate="2013.09.01"/>

<Device Name="ImportDevice1" Version="1.0" StartDate="2011.01.01" EndDate="2015.01.05"/>

</DeviceGroup>

</Groups>

The XML elements in the file require the following configuration in the XML import set:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 64

• Groups: No configuration is required. The Groups root XML element does not contain any information of its own. This means that no XML attributes
or child XML elements without XML attributes will be included.

• DeviceGroup: A temporary table must be defined with an Import Entry within the ADIF XML Import Set .

This XML element stores information in XML attributes and has a child XML element without XML attributes. The XML element also has child XML elements
with XML attributes. To import all data about device groups from the file, the temporary table must have one column for the Name XML attribute, one for
the Description XML element and one for the hierarchical ID definition.

• Device : A temporary table must be defined with an import entry within the ADIF XML import set .

This XML element stores information in XML attributes. It is assigned to a parent XML element with own XML attributes. To import all data about devices
from the file, the temporary table must have one column for each XML attribute and one for the hierarchical ID definition of the parent XML element.

• Description: The XML element has no own XML attributes, but text content and a parent XML element with attributes. It is defined as column of the
temporary table of its parent XML element.

The resulting import scheme definition is displayed below. The example is a complete configuration of a working import. Therefore, additional configura-
tions for import of the relations are also included:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 65

It is recommended that you use the semi-automatic interpretation mechanism for import from XML files provided in the ADIF configuration interface instead
of performing the configuration steps one-by-one as described in the following. For more information, see Semi-Automatic Creation of Import Entry Defini-
tions for Import Files.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 66

To configure data upload from an XML file:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select Create XML Import Set. A new XML Import Set is

added to the explorer. A default name is provided for the XML import set. Below the XML Import Set , a folder for the creation of SQL commands to be
executed on activation of the XML import set is automatically added.

2) In the attribute window of the XML Import Set , set the following attributes to define the import file:

• Name: Enter a meaningful name for the XML import set.

• Comments: Enter a comment that provides information about the functionality implemented within the XML import set.

• Import XML File: Enter the name of the XML file from which the data shall be imported. The name must include the file extension.

• Source XSD File: Optionally, enter the name of the XSD file defining the schema for the XML import file. This attribute is information for the ADIF scheme
designer only and has no technical impact.

• Is Active : Select True to activate the execution of all import entries within the import set. Select False to deactivate the execution.

3) Right-click the XML Import Set in the explorer and select Create Entry. A new Import Entry is added to the XML import set.

4) Define the import of an XML element type in your import XML file to a temporary table and the update of a target Alfabet database table with the information
in the temporary table.

For information about the required configuration, see Defining Import of External Data in an Import Entry.

5) If more than one XML element matching the criteria for mapping to a temporary table is included in your import XML file, repeat steps 3.) and 4.) for each XML
element.

Optionally, you can define SQL commands that allow you to deactivate this part of the import scheme if specified preconditions have been fulfilled.

For more information see Configuring the Conditional Execution of Parts of the Import Scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 67

Pre-Processing XML files As Part of the Import Process

If the XML structure that you would like to import does not match the required structure for import via an ADIF import scheme, for example because you have format-
ting elements in the text or elements containing different information in different hierarchy levels of the XML have the same name, you can define an XSL transfor-
mation definition in the ADIF import scheme that converts the XML structure of all files to be imported into a format suitable for ADIF import and import the XML
structure resulting from the XSL transformation.

If you define the XSL transformation code in the ADIF import scheme prior to defining the ADIF elements of the XML import, the XSL transformation will also be applied
to the imported XML prior to executing the functionality Create XML Set from File.

To apply XSL pre-processing to imported XML files:

1) In the explorer of the ADIF configuration interface, click the ADIF import scheme for import of your XML. The attribute window opens.

2) Click the Browse button in the field of the attribute XSL Transformation. A text editor opens.

3) Define your XSL code in the editor.

Please note that the term select is not allowed in the XSL file for security reasons. For example, a statement like:

<xsl:apply-templates select=".//*"/>

is not allowed in the XSL when assigned to an ADIF import scheme.

4) Click OK to safe your changes.

Defining Data Import from JSON Files

JSON data is imported to a predefined temporary table structure. For each key/value pair within a JSON object, a row is written into the temporary table.

The temporary table has the following columns:

• OBJID: An internal ID is assigned to each JSON object in the import file to unambiguously identify the JSON object and to be able to build the hierarchical
structure.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 68

• PARENTOBJID: If a JSON object is defined within a property field of a parent JSON object, the internal object ID in the column OBJID of the parent object is
written into the PARENTOBJID column for the subordinate JSON object.

• PARENTPROPNAME: If a JSON object is defined within a key of a parent JSON object, this column contains the name of the key.

• PROPNAME: The name of the JSON key.

• PROPISLIST: A Boolean value that is true if the key contains a list of JSON objects.

• VALUEINTEGER: If the value for the key is an integer value, it is written into this column.

• VALUEFLOAT: If the value for the key is a float value, it is written into this column.

• VALUEDATE: If the value for the key is a date, it is written into this column.

• VALUETEXT: If the value for the key is a text or string, it is written into this column.

• VALUEBOOLEAN: If the value for the key is a Boolean value, it is written into this column.

The table is filled as follows for different JSON structures. For example:

Import of text, string, integer, float, Boolean and date key/value pairs on the root level

For each key/value pair there is a row in the table.

The OBJID for all key/value pairs belonging to the same object is identical.

PARENTOBJID and PARENTPROPNAME are empty on the root level.

The key is written into the column PROPNAME while the value is written into the VALUE<data type> column corresponding to its data type.

{

"TextProperty": "This is a root property",

"DateProperty": "2018-02-13T09:15:00",

"IntegerProperty": 16

}

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 69

Import of an array key/value pair on the root level

For each value in the array there is a row in the table.

All values are belonging to the same object and the same key, therefore the object identifier written into the OBJID column and the key name written into the
PROPNAME column are identical for all rows.

The column PROPISLIST is set to 1, that means true, because the key value is a list of values. In the following example of the resulting dataset this is converted to an x
by the SQL parser.

PARENTOBJID and PARENTPROPNAME are empty on the root level.

The values are written into the VALUE<data type> column corresponding to their data type.

{

"ArrayProperty": ["Value1","Value2"]

}

Import of an object list on the root level

For each key/value pair of any of the root objects there is a row in the table.

Each object in the list has a unique OBJID. The OBJID for all key/value pairs belonging to the same object is identical.

PARENTOBJID and PARENTPROPNAME are empty, because all objects are root objects.

The key is written into the column PROPNAME while the value is written into the VALUE<data type> column corresponding to it's data type.

[

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 70

{

"RootTextProperty": "This is the first object in a list",

"RootIntegerProperty": 1

},

{

"RootTextProperty": "This is the second object in a list",

"RootIntegerProperty": 2

}

]

Import of a key/value pair of a root object containing a subordinate object

There is one row for the key containing the object as value and one for each key/value pair of the subordinate object.

In the row for the key containing the object, the object ID of the root object is written into the column OBJID and the key is written into the column PROPNAME. All
other columns are empty.

In the rows for the key/value pairs of the subordinate objects, PARENTOBJID and PARENTPROPNAME are identical to the OBJID and PROPNAME column values of the key
containing the object.

The OBJID of the subordinate object is a unique ID that provides information about the hierarchy in the file. The object ID value starts with the object ID of the root
ancestor object and adds the ID of each object in the hierarchy, with the levels separated with a dot. An object on the third level of the hierarchy would have an object
ID like 1.1.1.

In the rows for the key/value pairs of the subordinate objects, the key is written into the column PROPNAME while the value is written into the VALUE<data type> col-
umn corresponding to it's data type.

{

"ObjectProperty":

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 71

{

"SubTextProperty": "This is a subordinate object",

"SubIntegerProperty": 1

}

}

Import of a key/value pair of a root object containing a list of objects

There is one row for each key/value pair of the subordinate objects.

In each row, the object ID of the object containing the key that returns the list of object is written into the column OBJID. The name of that key is written into the
column PROPNAME.

The OBJID of the subordinate objects is a unique ID that provides information about the hierarchy in the file. The object ID value starts with the object ID of the root
ancestor object and adds the ID of each object in the hierarchy, with the levels separated with a dot. An object on the third level of the hierarchy would have an object
ID like 1.1.1. All rows belonging to the same object have the same ID.

In the rows for the key/value pairs of the subordinate objects, the key is written into the column PROPNAME while the value is written into the VALUE<data type> col-
umn corresponding to it's data type.

{

"ObjectListProperty": [

{

"SubTextProperty": "This is the first object in a list",

"SubIntegerProperty": 1

},

{

"SubTextProperty": "This is the second object in a list",

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 72

"SubIntegerProperty": 2

}

]

}

To define an import entry for the import of a JSON object:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select Create Entry for Hierarchical JSON. A new Import

Entry is added to the explorer. A default name is provided for the import entry.

The context menu option Create JSON Import Set and Create JSON Set from File are available for backward compatibility reasons. These op-
tions cannot be used for all JSON formats. For example a JSON list of object on the top level of the JSON file cannot be imported via these options.
They were therefore substituted with the method Create Entry for Hierarchical JSON.

2) In the attribute window of the Import Entry , set the following attributes:

• Name: It is recommended to change the default name for the import entry to a meaningful string that helps you identify the purpose of the import entry.

• Import Table: Enter the name including file extension of the JSON import file from which the data shall be imported. The file extension must be.json.

• Temporary Database Table: Enter a name for the temporary database table to which the data shall be imported. The temporary database table is
automatically created in the Alfabet database table during import and filled with the external data. A default is automatically entered when creating the
import entry. The name of the temporary table must be unique within the ADIF import scheme.

• Comments: Enter a description of the import process triggered by the JSON import entry.

• Is Active : Select True to activate the execution of the import entry. Select False to deactivate the execution.

3) The Attributes folder of the JSON import entry automatically contains the required attribute entries to create the predefined temporary table structure for
JSON import. The attributes must not be changed.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 73

4) For each database table that shall be updated with data in the JSON import, create an Import Entry as defined in the section Defining Import of External
Data in an Import Entry. The data defined in the temporary table of the JSON import entry can be used as input for the temporary tables in other import
entries as follows:

• Leave the import column of each attribute defined for the import entry empty.

• Create an SQL command of the type OnStart defining an UPDATE or INSERT INTO statement to fill the temporary table of the current entry with the
data from the temporary table defined in the JSON import entry.

For details about the required configuration, see Defining Import of External Data in an Import Entry and the example below.

The following example describes an import of application group short names via a JSON file with the following structure:

[

{

"ClassName": "ApplicationGroup",

"Values": {

"name": "OptiRetail CRM",

"shortname": "OR CRM"

}

},

{

"ClassName": "ApplicationGroup",

"Values": {

"name": "AI CRM AS-IS Situation",

"shortname": "AI CRM IS"

}

}

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 74

]

Both application groups listed in the example JSON do not have a short name in the Alfabet database:

The ADIF import scheme contains two entries:

• JSONImport for import of the JSON file to the predefined temporary table.

• AppgImport for update of the APPLICATIONGROUP table of the Alfabet database.

The import entry AppgImport defines the temporary table and the mapping to the object class properties of the class application group via the settings of
the import entry and the definition of attributes in the Attributes folder. The attributes are displayed as:

column in import file -> column in temporary table -> column in Alfabet object class table

The import column in the attributes is undefined, because import is not performed via an external data source. The temporary table will be filled via SQL
commands of the type OnStart.

The temporary table has three columns:

• IDVAL, which will be used to map the data to one of the JSON objects in the JSON file. This column is not imported into the Alfabet object class
table.

• APPGNAME, which is defined as class key and mapped to the object class property Name of the class ApplicationGroup. The ADIF import
mechanism will use the data in this column to map the data in the temporary table to the correct application group.

• APPGSHORTNAME, which is mapped to the object class property ShortName of the class ApplicationGroup.

In the SQL Commands - OnStart folder, two SQL commands are defined that will be executed after the import of the data from the import file and prior to
the data bind that maps the temporary tables of the import entries to Alfabet objects, if applicable.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 75

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 76

During import, first all temporary tables are created and then import from the example JSON file is performed for the JSONImport JSON import entry. This
leads to the following dataset in the temporary table TMP_JSON_IMPORT:

Afterwards, the import mechanism executes the SQL commands in the AppgImport import entry in the given order. The first SQL command searches the
TMP_JSON_IMPORT table for rows where the PROPNAME is name and writes values for VALUETEXT and OBJID of these rows into the temporary table AP-
PGROUPIMPORT_TMP:

INSERT INTO APPGROUPIMPORT_TMP (APPGNAME, APPGSHORTNAME, IDVAL)

SELECT VALUETEXT, NULL, OBJID

FROM TMP_JSON_SRC

WHERE TMP_JSON_SRC.PROPNAME =‘name'

The column REFSTR that is visible in the temporary table has been added by the ADIF import mechanism to perform the mapping to application groups in a
later step.

The second SQL command searches the TMP_JSON_IMPORT table for rows where the PROPNAME is shortname and updates the existing rows in the AP-
PGROUPIMPORT_TMP table by writing the values in the VALUETEXT column into the column APPGSHORTNAME, using the OBJID and IDVAL columns in the
two tables to match the data to the correct row.

UPDATE APPGROUPIMPORT_TMP SET APPGROUPIMPORT_TMP.APPGSHORTNAME = TMP_JSON_SRC.VALUETEXT FROM APPGROUPIMPORT_TMP,
TMP_JSON_SRC WHERE TMP_JSON_SRC.OBJID = APPGROUPIMPORT_TMP.IDVAL AND TMP_JSON_SRC.PROPNAME =‘shortname'

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 77

The ADIF import mechanism now maps the entries in the table with existing application groups and fills the REFSTR of the application groups into the REF-
STR column of the APPGROUPIMORT_TMP table:

In the next step, the ADIF import mechanism uses the information in the REFSTR and the APPGSHORTNAME columns of the APPGGROUPIMPORT_TMP table to
update the standard Alfabet database table APPLICATIONGROUP with the correct short name per object:

After that, the temporary tables are removed from the database.

Defining Data Import from Microsoft® Excel Files and Comma-Separated File Formats

When data is imported from CSV. TXT, XLSX or XLS files, the data is written from the import file directly to the temporary table in the Alfabet database. The data in the
import file should correspond to a database table structure:

• Interpretation of Comma-Separated File Formats

The CSV file is regarded as a representation of a database table with the database column headers specified in the first line of the file. The following lines in the file
represent the data rows in the database table.

• Interpretation of Excel® File Formats

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 78

Data is read from the first sheet in the file only. The data in the Excel® must have a flat table structure. The column headers must be specified in the first row. The
following rows in the table represent the data rows in the database table.

When importing from Microsoft® Excel® files or comma-separated file formats, the import entries that define how data is processed during import can be defined

directly in the import scheme. Nevertheless, it is possible to define grouping within file import sets. The file import set is like a folder node in the ADIF explorer.
The only functionality provided by the folder is the batch activation or deactivation of all import entries within the file import set.

To create a file import set:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select Create File Import Set. The new File Import Set is

added to the explorer with a default name for the file import set. Below the File Import Set , a folder for the creation of SQL commands to be executed on
activation of the import set is automatically added.

2) In the attribute window of the file import set , set the following attributes to configure the connection to the external database:

• Name: Enter a meaningful name for the file import set.

• Comments: Enter a comment that provides information about the functionality implemented within the file import set.

• Is Active : Select True to activate the execution of all import entries within the import set. Select False to deactivate the execution.

After creating the file import set, you must now add import entries that map the data in external files to the data in the Alfabet database.

For more information, see Defining Import of External Data in an Import Entry.

Optionally, you can define SQL commands that allow you to deactivate this part of the import scheme if specified preconditions have been fulfilled. For
more information see Configuring the Conditional Execution of Parts of the Import Scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 79

Defining Import of External Data in an Import Entry

An import entry defines the import of data to the Alfabet database for one single object class from one sin-
gle source. You can define multiple import entries for a single import file or database table in order to im-
port multiple classes from one source. Even if the files all have the same file type, you must define multiple
import entries to import data for one class from multiple database tables or files.

When importing data from Microsoft® Excel® files or comma-separated file formats, each import file is re-
garded as a database table. Therefore, the data in the file must correspond to the structure of a database
table.

• Interpretation of Comma-Separated File Formats

The CSV file is regarded as a representation of a database table with the database column headers speci-
fied in the first line of the file. The following lines in the file represent the data rows in the database table.

• Interpretation of Excel® File Formats

Data is read from the first sheet in the file only. The data in the Excel® must have a flat table structure. The
column headers must be specified in the first row. The following rows in the table represent the data rows
in the database table.

• Interpretation of External Database Tables

The data set that is used as import data is not directly read from the database tables of the external data-
base. In the ADIF import entry defining the import, an SQL query with a SELECT statement must be defined
as an SQL command for data upload. The data set resulting from the query is uploaded by ADIF as import
data. The column headers of the import table are defined by the alias specifications in the SELECT state-
ment.

For more information about data upload from an external database and the configuration required before
carrying out the configuration described below, see Defining Data Upload from an External Database in a
Database Import Set.

• Interpretation of LDAP Tables

The data set that is used as import data is not directly read from the LDAP tables database. In the ADIF im-
port entry defining the import, a query must be written in LDAP-specific query syntax and must be defined
as an SQL command for data upload. The data set resulting from the query is uploaded by ADIF as import
data. The column headers of the import table are defined by the data set header definitions in the query.
For more information about data upload from LDAP and the configuration required prior to performing the
configuration described in this section, see Defining Data Upload from an LDAP Table in an LDAP Import
Set.

• Interpretation of XML files

Each XML element that contains XML attributes and/or child XML elements with text content but without
own XML attributes is regarded as a database table. The database table name is the name of the XML ele-
ment. The database column names are the names of the XML attributes of the XML element as well as the
names of the child elements without own XML attributes but with text context.

To store information about the hierarchy of the XML elements available in the import file in the temporary
tables generated during ADIF import, an ID is automatically created for each XML element during import. A
database column storing the ID of the XML element must be added to each temporary table and a database

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 80

column storing the ID of the parent XML element must be added to the temporary table for each XML ele-
ment that has a parent XML element.

An import entry triggers the import by means of two steps:

1) External data is written to a temporary table

2) Data from the temporary table is written to the Alfabet database table.

The information required to build the temporary table and the changes to be performed in the Alfabet data-

base table must be specified in the child elements of the Import Entry . The temporary table does not
necessarily have to be an exact copy of the data as provided in the import database or file. You can add ad-
ditional columns to the table that are left empty or filled with either a static value or a value that is specified
by means of an SQL query. Data can be selected from the initial temporary database tables in order to cre-
ate new temporary tables.

As a final step, you configure which temporary tables are used to change the data in the Alfabet database
table of the target object class.

Configuring the import to the Alfabet database can be a complex process that includes definition of various
child elements of the import entry and SQL commands to be executed during the process. The following
sections provide basic information about how to configure an import entry and its child elements in the
context of basic tasks that are most commonly part of an import process. When defining import entries, you
must combine and adapt the different possible configuration steps to match your individual requirements.

It is important to take the order of execution of the import entries in the ADIF import scheme into account
when configuring import. The import process reads all import entries multiple times to perform the follow-
ing consecutive actions:

1) Create all temporary tables defined in all import entries in the order of the Import

Entry definitions in the ADIF import scheme.

2) Write data sets from the external files/database tables to the temporary tables in the order of
import entry definition in the ADIF import scheme.

3) Perform all DML statements defined in SQL commands of the type OnStart.

4) Update the Alfabet object class database tables with data from the temporary tables according to
the specification in the import entries in the order of import entry definition in the ADIF import
scheme.

5) Update the RELATIONS table of the Alfabet database if relation updates are defined in import
entries in the order of import entry definition in the ADIF import scheme.

6) Perform all DML statements defined in SQL commands of the type OnComplete.

7) Drop all temporary tables if that the ADIF import scheme is configured to drop temporary tables.

The ADIF import scheme allows the specification of additional SQL commands to be executed at
different times during the import process. For information on the order of execution of these SQL
commands, see the section Configuring SQL Commands for Optional Enhanced Import Features.

This order of execution allows, for example, data to be found and processed from all temporary tables cre-
ated for other import entries in the SQL commands of an import entry.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 81

Mapping External Data to Temporary Tables and Alfabet Database Tables

Prior to configuring your import, you must first evaluate how the external data is mapped to the Alfabet
meta-model and the Alfabet database tables

• What is the target class for my data import?

One import file can include data for import to multiple classes. You must then define multiple import entries
for import from the same data. Each import entry defines a temporary table that imports the subset of data
relevant for import to one object class of the Alfabet meta-model.

• Does the target class have the required properties to store the data to be imported for the class?

If the import data includes a property that is not available in the standard object class properties of the tar-
get object class in the Alfabet meta-model, new properties can be created in the Alfabet meta-model for
the target object class.

Custom properties must be configured in the configuration tool in the configuration tool
Alfabet Expand. For information about how to create a custom property, see the section
Configuring Custom Properties for Protected or Public Object Classes in the reference
manual Configuring Alfabet with Alfabet Expand.

You must use the configuration capabilities in Alfabet Expand to add new property col-
umns to a database table of a Alfabet object class. It is not permissible to add a property
column via a DDL statement in the SQL commands of the ADIF scheme. Existing stand-
ard Alfabet database tables must not be altered by SQL commands via ADIF.

• What are the required data formats and types for the import data?

Check whether the import data matches the data format of the target database table column in the Alfabet
database. the data types and formats are described in the table Data Types and Formats in the chapter The
Alfabet Meta-Model in the Alfabet Database.

The ADIF import scheme provides mechanisms to automatically adapt date, number, and boolean values to
the formatting required in the Alfabet database. You can provide information about the data format used in
your external data for dates, numbers and Boolean expressions and these values are then automatically
converted to the right format during import.

For more information, see Defining Import of External Data in an Import Entry.

The ADIF import scheme also allows empty columns to be added to the temporary table and fills them with
values via SQL commands after the external data has been written to the temporary table. You can also de-
fine SQL commands to alter data that has been written to the temporary database table. These mecha-
nisms allow you to convert import data to any desired import format or to set default values if the import
data does not consistently provide information for a property.

For more information, see Use Case: Filling Empty Property Values with Default Values When Importing to
Mandatory Object Class Properties.

Empty strings cannot be imported to the Alfabet database. If an empty string is imported
for a property value, the property value is set to NULL in the Alfabet database. If you do
not want NULL to be set for the property, you can use SQL commands to set default val-
ues instead of empty strings in the temporary tables before import to Alfabet database
tables.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 82

• When new objects are created during import, does the import data provide all mandatory
information?

Some object class properties in the Alfabet meta-model are mandatory. When such a property is missing
during import, you may corrupt your Alfabet database. Please note that mandatory properties are high-
lighted yellow in the meta-model browser in the ADIF configuration interface. You must ensure that data is
provided for all mandatory properties.

Apart from the object class properties marked as mandatory, other properties might be mandatory because
of your specific demands or shall be set in order to allow users to find the imported object. For example, you
can import an object without specification of an authorized user, assignment, or any other definition that is
used to constitute access permissions for users. As a result, none of the users will have edit rights to the
imported object.

If values are not provided for mandatory properties for some objects, you can configure the import entry
via SQL commands to set property values in the temporary table prior to data import. For more information,
see Use Case: Filling Empty Property Values with Default Values When Importing to Mandatory Object Class
Properties.

• Is data translation activated for the target Alfabet database?

The data translation functionality of the Alfabet database allows to translate object names and descrip-
tions. If the feature is activated, two new columns called NAME_<language code> and DESCRIP-
TION_<language code> are added to the database tables for each language that data translation is acti-
vated for. The translated values must be imported via ADIF together with the original values. In the ADIF
import scheme mapping of data to the properties of the target object class includes a language specifica-
tion. For each imported language a data mapping must be defined.

For example, if the Name property of a target class is translated to German, the original
and translated values must both be mapped to the Name property of the target class.
The original values are mapped without a language specification. The German values
are mapped with a German language specification.

For more information, see Mapping External Data to Temporary Tables and Alfabet Database Tables.

For more information about the configuration of object data translation, see the section
Configuring the Translation of Object Data in the chapter Localization and Multi-Lan-
guage Support for the Alfabet Interface.

• How can the data records be mapped to existing objects in the target database table?

The Alfabet meta-model stores data about each object in the Alfabet database with a number of unique
identifiers that are automatically set when a new object is created. During data import, these unique identi-
fiers are automatically added to new records with the exception of the unique REFSTR property. This prop-
erty is used to map the imported data records to data records that already exist in the Alfabet database.
Therefore, the REFSTR of the objects is set during import via a special data bind mechanism that takes
mapping to existing data into account. The REFSTR of objects is exclusively set by this mechanism. There-
fore, data bind must also be performed for initial data import to empty database tables.

The data bind mechanism requires that each object in the external data has a unique identifier that is in-
cluded in the import. When data is imported to database tables that already contain objects, this identifier
must be a unique property of the target object class that allows to identify whether the imported object is
identical to an existing object.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 83

The following section describes the mechanisms provided via ADIF for the secure import of data. Addition-
ally, you can use your own SQL commands to add complex functionality to the basic import.

For more information about additional SQL commands, see Configuring SQL Commands for Optional En-
hanced Import Features.

The ADIF import mechanisms are designed to provide a high level of security. Always check
whether an import can be performed via an import mechanism provided by ADIF prior to defining
your own SQL commands to perform the import.

Creating an Import Entry to Map the Database Tables

You must add at least one import entry per external file or external database table to the ADIF import
scheme. An import entry defines mapping between one external file or external database table and one tar-
get database table of the Alfabet meta-model.

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme or the
import set that you want to create an import entry for and select Create Entry.

2) In the attribute window of the Import Entry , set the following attributes to define the import
entry:

• Name: It is recommended to change the default name for the import entry to a meaningful
string that helps you identify the purpose of the import entry.

• Comments: Enter a description of the import process configured by the database import set.

• Is Active : Select True to activate the execution of the import entry. Select False to
deactivate the execution.

• Squeeze Audit Table: Select True to clean the audit table from meaningless entries created
for technical reasons during import.

For more information about the squeezing of audit tables, see Clean-up of the audit tables.

3) Define the import to the temporary database table in the attribute window:

• Import Table: Set this attribute according to the requirements of your import format:

• For import from an XLSX, XLS, JSON, CSV or TXT file: Enter the name including the file
extension of the file from which the import shall be performed.

• For import from an XML file: Enter the name of the XML element in the XML import file
for which the data shall be imported for.

• For import form an external database or LDAP: This attribute will be ignored.

• Temp Database Table: Enter a name for the temporary database table to which the data shall
be imported. The temporary database table is automatically created in the Alfabet database
table during import and filled with the external data.

Please note the following:

• The database table name must be unique. You must not use the name of an
existing Alfabet database table! It is recommended that you start all

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 84

temporary table names with the prefix TMP_ to make sure that no conflicts
with the existing database configuration occur.

• For import from JSON, the table name is preconfigured and has to be
TMP_JSON_SRC.

• Table Owner: Select True to activate the automatic creation of the temporary table and the
execution of data record mapping with data in the Alfabet database.

Setting this attribute to False in order to deactivate the processing of temporary
tables is only relevant when configuring the data import from multiple external
files/database tables to a single temporary table.

For more information, see Collecting Data from Multiple External Files or Database
Tables in one Temporary Table.

4) Define the data formats in the import data to enable automatic conversion to the formats required
in the Alfabet database:

• Boolean’False’ : Enter the value in your external data that shall be interpreted as the Boolean
value False during import. For example, if you define "no", and the ADIF scheme is configured
to import a property as boolean, the value "no" will be automatically converted to the Boolean
format False used in the Alfabet meta-model during import.

• Boolean’True’ : Enter the value in your external data that shall be interpreted as he Boolean
value True during import. For example, if you define "yes", and the ADIF scheme is configured
to import a property as boolean, the value "yes" will be automatically converted to the Boolean
forma True used in the Alfabet meta-model during import.

• Date Format: Enter the date format used in your external data.

• Number Decimal Digits: Enter the number of decimal digits used in your import data.

• Number Decimal Separator: Enter the decimal separator used in your import data in
numbers.

• Number Group Separator: Enter the group separator used in your import data in numbers.

• Encoding: For import from comma-separated files only: In the drop-down list, select the
encoding of the import file.

• Delimiter: For import from comma-separated files only: Define the delimiter used in the file to
separate data within a record.

5) In the attribute window, define the mapping of data records to the target Alfabet database table:

The following specifications are optional. You can define an import entry for import to a
temporary table only (for example, if you want the data to be used exclusively in SQL
commands of other import entries). When data from the temporary database table is im-
ported to a target Alfabet database table, these specifications are required.

• Class Name: Select the target object class of the Alfabet meta-model.

• Create Instances : Select True to allow new records to be added to the Alfabet database
tables during import triggered by this import entry. Select False to limit import to
manipulation of existing records.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 85

This specification only applies to the database table of the object class specified
with the Class Name attribute. If objects are added to other database tables via SQL
commands, for example to create indicators or roles assigned to the target object
class during import, objects of the related object classes will be created even if the
Create Instances attribute is set to False.

• Update Instances: Select True to allow existing data to be altered in the Alfabet database
tables during import by this import entry.

This specification only applies to the database table of the object class specified
with the Class Name attribute. If objects are altered in other database tables via
SQL commands, for example to update indicators or roles assigned to the target ob-
ject class during import, objects of the related object classes will be updated even if
the Update Instances attribute is set to False.

Creating Attribute Entries to Map the Database Table Columns

The columns of the temporary table and the mapping of the temporary table columns to both import data
and to target columns in the Alfabet database are defined in the child elements attribute of the Import En-

try . For each column of the temporary table, an attribute element must be defined:

The specification of database column names is case-sensitive.

1) In the explorer of the ADIF configuration interface, right-click the Import Entry that you want
to create an Attribute element for and select Create Attribute.

2) In the attribute window of the Attribute element , set the following to define a column in the
temporary table:

• Database Column: Enter a name for the database column of the temporary table.

• Import Column: Enter the name of the column of the external data table from which data
shall be written. Setting this attribute is optional. You can define columns in the temporary
table that are not filled from the external data.

• Property Name: In the drop-down list, select the property of the target object class for which
you want to update data. The Name attribute of the object class property from the Alfabet
meta-model must be used to specify the object class. This attribute is not necessarily
identical to the name of the database table column. Setting this attribute is optional. You can
define columns in the temporary table that are not mapped to a Alfabet database table
column.

The specification of the target object class property via the Name attribute of the
object class property limits data import to columns in the target Alfabet database
table that contain property definitions. If you want to update data in database table
columns that are created by database triggers in the Alfabet database (for example,
the database columns for the translation of object names and descriptions to de-
fined languages), you must define the update via an SQL command in the folder SQL
Commands - OnComplete.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 86

For more information, see Configuring SQL Commands for Optional Enhanced Im-
port Features.

• Is Key: Select True if this property shall be used to map data records to existing data records
in the Alfabet database during import. Automatic mapping of data is only performed if at least
one attribute element of the import entry has a Is Key attribute set to True.

• For details about the mapping of objects, see Defining Mapping of Data Records.

3) During import, data must be written to the temporary table in a format that matches the
requirements of the target database table column of the Alfabet database. Most of the following
attributes are set automatically to the required values when you set the Property Name attribute.
You can optionally adapt them to your specific requirements:

• Data Type: In the drop-down list, select the data type of the target object class property in
the Alfabet database.

• Size: If String is selected in the Data Type field, define the size of the string column in the
temporary database table. The size specification should match the size specification of the
target object class property in the Alfabet database.

The Size attribute can only be set manually if the column of the temporary table is
not mapped to a Alfabet database column (by setting the attribute Property
Name). If Property Name is specified, the Size value is automatically set to the re-
quired size and is reset to the defined value when changed manually.

For technical reasons, the Size value must be set to <size in the target database ta-
ble>+1. For example, if you want to import a value with a permissible size of 16, you
must define the Size attribute as 17.

• Truncate To Size: For properties of the Data Type String only. Select True to truncate
imported strings with a size greater than the Size specification. Select False to cancel import
with the exception of when import data does not match the specified size.

• Trim End: If this attribute is set to True, blank spaces at the end of imported strings are
removed when importing the data into the temporary table. Please note that non breaking
spaces are not removed by this mechanism. By default, the attribute is set to False.

• Trim Start: If this attribute is set to True, blank spaces at the beginning of imported strings
are removed when importing the data into the temporary table. Please note that non breaking
spaces are not removed by this mechanism. By default, the attribute is set to False.

4) If the target property establishes a reference to another object class and the Alfabet meta-model
includes a back-reference from the referenced object class to the referencing object class, the
back reference is updated automatically during import when the following attributes are defined:

• Rescan Back Relations : Select True to automatically set back relations.

Always set Rescan Back Relations to True when importing to an object class prop-
erty of the type Reference for which the BackReference attribute defines an at-
tribute name. Otherwise, your import will result in database inconsistencies.

• To Class: In the drop-down list, select the target object class in the Alfabet database that the
back reference is to be set for. The Name attribute of the object class from the Alfabet meta-
model must be used to specify the object class. This attribute is not necessarily identical to
the name of the database table. Setting this attribute is optional. If the target class of the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 87

reference is defined in the TypeInfo attribute of the property mapped with this attribute
element, it is not required to set this attribute.

• Back Relation: Enter the name of the target object class property that establishes the back
reference. Setting of this attribute is optional. If the property establishing the back reference
is already specified in the BackReference attribute of the property mapped with this
attribute element, it is not required to set this attribute.

5) If the imported data is a translated value for a Name or Description property of the target object
class, the target language must be defined with the following attribute:

• Language: Select the culture for that the values are imported in the drop-down list.

The Language attribute shall not be set for values imported for the standard original
language culture.

For more information about the storage of object property translations in the
Alfabet database, see Storage of Translatable Object Class Properties in the chapter
The Alfabet Meta-Model in the Alfabet Database.

Defining Mapping of Data Records

The unique REFSTR property of objects in the Alfabet database is used to map objects to existing objects in
the Alfabet database.

The ADIF import scheme provides a data bind mechanism that adds the REFSTR property to external data in
the temporary database tables, taking mapping of objects to existing data records in the Alfabet database
into account. For existing objects, the REFSTR configured for the object in the Alfabet database table is
written to the temporary table and for new objects, a unique REFSTR is generated and added to the tempo-
rary table. Based on the REFSTR added to the temporary table, import to Alfabet database tables and defi-
nition of relations between objects can be performed.

The data bind mechanism must be run during import, even if the database table to that data is
imported is empty. While all other unique properties, like for example the INSTGUID of new ob-
jects is set automatically when writing the new record to the database table, the REFSTR prop-
erty in the Alfabet database tables is exclusively set by the data bind mechanism.

Correct update and creation of objects in the object class database tables of the Alfabet data-
base, including setting of required GUIDs and specification of the last update and creation time
and user information depends on the data bind. ADIF import must be handled via the temporary
table. Using ADIF for direct import of data into object class database tables of the Alfabet data-
base via SQL commands can lead to a loss of database integrity and must not be performed.

All properties in the group Artifact have properties that store information about changes to
the object.

The following properties are set when an object is created or updated via the data bind based
ADIF import:

• The property LAST_UPDATE is set to the current date.

• The property LAST_UPDATE_USER is set to the user triggering the update. If a user cannot
be identified, the property is set to ALFABET_INTERN.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 88

The following properties are additionally set when an object is created:

• The property CREATION_DATE is set to the current date.

• The property CREATION_USER is set to the user triggering the update. If a user cannot be
identified, the property is set to ALFABET_INTERN.

If an audit table is available for an object class, the audit history is also updated. For more infor-
mation, see Audit History Storage.

The data bind mechanism does the following:

• A column REFSTR is automatically added to the temporary database table.

• After import of the external data to the temporary table, the data bind mechanism compares the
data records in the temporary database table with data records in the target Alfabet database table
by means of customer defined key properties. If records in the temporary table are identified as
matching a record in the Alfabet database table, the REFSTR from the Alfabet data record is written
into the REFSTR column of the temporary database table.

• For each row in the temporary table that a REFSTR is defined for, the data from the temporary table
is used to update the data with a respective REFSTR in the Alfabet database table.

• New objects are added to the target Alfabet database table for all rows in the temporary database
table that do not have a REFSTR defined. During creation of the new objects, the REFSTR property is
automatically set in the target Alfabet database tables.

• The REFSTR of the new objects is added to the temporary database table. When processing of the
bind command of the import entry is finished, the REFSTR column of the temporary table is
completely set with the correct REFSTR of all objects.

Data bind requires the following definition:

• The name of the target object class in the Alfabet meta-model must be defined in the attribute
Class Name of the import entry.

• At least one element Attribute with the attribute Property Name defining the Name of a property
of the target object class must be defined for the import entry.

• The mapping conditions must be defined. There are two ways to define mapping conditions:

• The attribute Is Key is set to True for at least one element Attribute with a Property Name
definition. The ADIF data bind mechanism then executes an automatically created bind query
that maps the content of the key column in the temporary database table with the content of
the column in the Alfabet database table specified with the attribute Property Name. You
can set the attribute Is Key to True for multiple elements Attribute. The bind mechanism
then maps records if all defined conditions apply.

• The specification of the data mapping is done via a customer defined SQL query that is
defined in the folder SQL Commands - DataBind.

Both mechanisms can be used in parallel.

It is recommended to rely on the mapping via key attributes whenever possible.

To define an own SQL command for data bind:

1) In the explorer of the ADIF configuration interface, navigate to the relevant Import Entry .

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 89

2) Right-click the folder SQL Commands - DataBind and select Create SQL Command. A new SQL

command is added as child node of the folder.

3) Click the new SQL command and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Command Type: Select DMLStatement.

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

4) In the attribute window, click the Browse button in the Text attribute to open an editor for the
definition of the SQL query. Define the SQL query in the SQL Text tab of the editor.

The text editor for the definition of SQL queries in the ADIF configuration interface pro-
vides help for the definition of the SQL query in separate tabs. For more information, see
Defining SQL Queries for SQL Commands in the chapter Configuring ADIF Schemes.

The SQL query must be an UPDATE statement targeting the temporary database table. The update
statement must be defined to fill the REFSTR column of the temporary database table with the
REFSTR value of matching objects in the target database table of the Alfabet database. The import
of new objects for which no matching object has been found in the target Alfabet database table
and the setting of the REFSTR for new objects is done automatically by the bind mechanism after
executing the bind query.

For example, a typical bind SQL query for the import of device groups mapped to exist-
ing objects with the same name:

UPDATE TMP_DEVICEGROUP

SET REFSTR = (SELECT dg.REFSTR FROM DEVICEGROUP dg WHERE
dg.NAME = TMP_DEVICEGROUP.NAME)

Defining Relations

Relations between objects of different classes are stored in object class properties of the data type Refer-
ence or ReferenceArray in the Alfabet database. Setting of references between objects in the Alfabet
database s can be included in the ADIF import.

When importing references between objects, you must ensure that an object does not reference
itself. Loop references can cause severe problems in the Alfabet database.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 90

If you want to set a reference between objects, you must first evaluate how the relation is established in
the Alfabet database:

• Is the relation part of the standard Alfabet meta-model?

If neither the referencing nor the referenced object class contains an appropriate object class property of
the type Reference or ReferenceArray, you must define a custom property of the type Reference or Ref-
erenceArray to establish the relation.

Custom properties must be configured in the configuration tool Alfabet Expand. For in-
formation about how to create a custom property, see the section Configuring Custom
Properties for Protected or Public Object Classes in the reference manual Configuring
Alfabet with Alfabet Expand.

You must use the configuration capabilities in Alfabet Expand to add new property col-
umns to a database table of a Alfabet object class. It is not permissible to add a property
column via a DDL statement in the SQL commands of the ADIF scheme. Existing stand-
ard Alfabet database tables must not be altered by SQL commands via ADIF.

• What is the data type of the property establishing the relation?

Relations of the type Reference establish a relation with one object only and are configured in an Attrib-

ute element in the import entry for the referencing class. Relations of the type ReferenceArray es-
tablish a 1 to n relation to multiple objects. If the attribute Reference Support is set to False, the relation
is configured in an Attribute element in the import entry for the referencing class. For more information,
see Defining Relations.

If the attribute Reference Support is set to True, the relation is configured in a Relations element in the
import entry of either the referenced or referencing object. For more information, see Import of Refer-
enceArrays with Reference Support Set to True.

• Is a back relation available?

For a small number of properties of the type Reference, a database trigger in the Alfabet database auto-
matically sets a corresponding back reference in a property of the referenced object class. If a property
leads to a creation of back references, the attribute Back Reference of the object class property displays
the name of the property of the referenced class that is updated by the trigger. If a back reference is avail-
able, Rescan Back Relations must be set to True in the ADIF Attribute element defining the relation to
automatically update the back relation.

• Are all objects that are target of the relation available in the Alfabet database ?

Relations can only be established to existing objects in the Alfabet database. If target objects are missing,
they must be created in the Alfabet database prior to import. You can, for example, configure the ADIF im-
port scheme to create the missing target objects in the respective Alfabet database table. Make sure that
the creation of objects takes place prior to the setting of relations during the import process.

Establishing relations between objects requires different configuration in ADIF depending on the reference
type.

Special support is provided for the references that must be imported to define an indicator or a role for an
object. The definition of a role or an indicator for an object requires the definition of multiple references be-
tween object classes in the Alfabet database. ADIF provides a mechanism that handles role and indicator
import for an object class without the need to define all required references separately in the configuration
of the ADIF scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 91

The following information is available about import of references:

• Import of References and ReferenceArrays with Reference Support Set to False

• Import of ReferenceArrays with Reference Support Set to True

• Defining a Role for Imported Objects

• Defining an Indicator for Imported Objects

Import of References and ReferenceArrays with Reference Support Set to False

The information about references is stored in the database table of the referencing object class. The data-
base column of the referencing object class property must contain the REFSTR property value of the refer-
enced object class.

The REFSTR is a unique property specific for the Alfabet meta-model and usually not part of the external
data. Referenced objects are usually specified via key attributes, like the name of the referenced object.
The import of values for a property of the type Reference therefore normally requires that the REFSTR of
the imported object is written to the temporary table prior to data import to the Alfabet database via an SQL
command in the folder SQL Commands - OnStart.

For example, the import of device data shall include the specification of an authorized user. The
object class Device in the Alfabet database has a property ResponsibleUser that defines the
responsible user via a reference to the object class Person. The required value to fill the data-
base column of the property ResponsibleUser is the REFSTR of the object class person.

In the import file, the authorized user is defined by the user’s login name, corresponding to the
USER_NAME property of the object class person. The column name in the external data table is
Owner:

When defining the import entry triggering import, perform the following configurations in the im-
port entry to set the values for the property ResponsibleUser of the object class Device:

1) Define an Attribute element that writes the data about the users login name to the
temporary table. Do not map the column to a property of the target database table in
the Alfabet database.

2) Define an Attribute element that creates a temporary database column not filled
with external data during import. Map the column to the target object class property
establishing the relation. In the example, the empty column is mapped to the property
ResponsibleUser of the target object class Device in the Alfabet database.

3) Right-click the folder SQL Commands - OnStart and select Create SQL Command.

4) Click the new SQL command and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 92

• Comments: Enter a comment that provides information about the functionality
implemented by the SQL command.

• Command Type : Select DMLStatement.

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the export to be executed even if the SQL
statement specified with the attribute Text results in an exception. Select False if
you do not want the export to be executed in case of an error in the SQL
statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate
the SQL command.

• In the attribute window, click the Browse button in the Text attribute to open
an editor for the definition of the SQL query. Define the SQL query in the SQL Text
tab of the editor.

The SQL query must be an UPDATE statement targeting the temporary database table. The query
must fill the column for the property establishing the relation with the REFSTR of the referenced
objects:

UPDATE TMP_DEVICE

SET OWNER_REF = (SELECT p.REFSTR FROM PERSON p WHERE p.USER_NAME =
TMP_DEVICE.OWNER)

Import of ReferenceArrays with Reference Support Set to True

Relations of the type ReferenceArray are stored in the RELATIONS table. The ADIF interface provides a
mechanism to fill the RELATIONS table with the required data during data import to a target object class.

It is not allowed to alter the RELATIONS table directly via an SQL command entering data from a
temporary table into the RELATIONS table. To ensure data integrity, RELATIONS of the type Ref-
erenceArray with attribute Reference Support set to True must be imported with the mecha-
nisms described below.

The temporary table must match the following criteria to import reference array entries to the RELATIONS
table:

• Both the REFSTR of the referencing object and the REFSTR of the referenced object can be read
from the temporary table defined in the import entry.

• For each relation to be added to the RELATIONS table (for each combination between referencing
object and referenced object), there must be a row in the temporary table.

The REFSTR is a unique property specific to the Alfabet meta-model and usually not part of the external
data. Referenced objects are usually specified via key attributes, like the name of the referenced object.
The import of values for a property of the type Reference therefore normally requires that the REFSTR of
the imported object is written to the temporary table prior to data import in the Alfabet database via an SQL
command in the folder SQL Commands - OnStart.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 93

• Define an Attribute element that writes the data about the users login name to the temporary
table. Do not map the column to a property of the target database table in the Alfabet database.

• Define an Attribute element that creates a temporary database column not filled with external
data during import. Map the column to the target object class property establishing the relation. In
the example, the empty column is mapped to the property ResponsibleUser of the target object
class Device in the Alfabet database.

• Define an SQL command in the folder SQL Commands - OnStart and define an UPDATE
statement executed on the temporary table that fills the empty column with the REFSTR of the
referenced object.

To trigger the changes in the RELATIONS table, you must add a relation element to the import entry:

1) Right-click the Relations folder of the import entry for which you want to import the

reference array data and select Create Relation. The new relation element is added as a sub-
node of the Relations folder.

2) Click the relation element and specify the following attributes in the attribute window:

• From Class: in the drop-down list, select the object class of the Alfabet database containing
the referencing property.

• Relation Name: Enter the name of the referencing property.

• From Column: Enter the name of the column of your temporary table that stores the REFSTR
of the referencing object.

• To Class: In the drop-down list, select the referenced object class of the Alfabet database.

• To Column: Enter the name of the column of your temporary table that stores the REFSTR of
the referenced object.

• Clear Before Create: Select True if you want all relations established by the property defined
with the attribute Relation Name to be deleted from the Alfabet RELATIONS table prior to
import of the new relations. Select False if you want to write new relations to the RELATIONS
table without clearing the RELATIONS table.

For example, data about devices and information about the assignment of the devices to device
groups shall be imported via an XML file. In the XML file, each device group is represented by an
element DeviceGroups. The devices in the device group are represented by child elements De-
vice in the respective DeviceGroup elements:

<Groups>

<DeviceGroup Name="ImportGroup1">

<Description>Server hosts</Description>

<Device Name="ImportDevice1" Version="1.0"
StartDate="2011.01.01" EndDate="2015.01.05"/>

<Device Name="ImportDevice2" Version="1.2"
StartDate="2011.08.24" EndDate="2014.12.31"/>

</DeviceGroup>

<DeviceGroup Name="ImportGroup2">

<Description>Web relevant devices</Description>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 94

<Device Name="Backup Server" Version="2.2.1"
StartDate="2009.09.30" EndDate="2013.09.01"/>

<Device Name="ImportDevice1" Version="1.0"
StartDate="2011.01.01" EndDate="2015.01.05"/>

</DeviceGroup>

</Groups>

In the ADIF import scheme for import of the data, one import entry is added for the import of de-
vice groups and one for import of devices. The relation between the device groups and devices
is stored via the automatically generated attribute DeviceGroup_Id.

(For details about processing the XML data, see Defining Data Import From XML Files in an XML
Import Set.)

In the Alfabet meta-model, the relation between device groups and devices is defined via the
object class Device with the property DeviceGroups and via the object class DeviceGroup
with the property Devices. In this example, the property DeviceGroups of the object class De-
vice is used to define the relation. The back reference will be automatically set by the import
mechanism during data import.

To establish a relation, the ADIF import mechanism has to find both the REFSTR of the referenc-
ing object and the REFSTR of the referenced object in the temporary database table for which

the relation element is specified. The relation element is processed after the import of data
into the database table of the target object class in the Alfabet database and therefore the REF-
STR of the referencing device can be read from the automatically generated REFSTR column of
the temporary table.

The REFSTR of the device group must be added to the temporary table via an SQL command of
the type OnStart. Therefore, the order of import entries in the ADIF scheme is configured to
trigger the import of device group data prior to the import of device data. This is required to en-
sure that references are only set to objects already existing in the Alfabet database and provides
information about the REFSTR of the device groups in parallel to the information about the De-
viceGroup_Id in the temporary table for device groups.

When defining the temporary table for the import of device data, an empty database column is
added to the temporary table that is neither filled with external data nor mapped to the target
Alfabet database table.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 95

An SQL command is added to the folder SQL Commands - OnStart that fills the empty col-
umn DEVICEGROUP with the REFSTR of the parent device group using the DeviceGroup_Id as a
mapping property:

UPDATE TMP_DEVICE

SET DEVICEGROUP =(SELECT REFSTR FROM TMP_DVG

WHERE TMP_DVG.DEVICEGROUP_ID = TMP_DEVICE.DEVICEGROUP_ID)

This is how the temporary table that results looks:

The table has one row for each combination of device and device group. That means that there
are two rows for the device ImportDevice1 that is assigned to two device groups. Nevertheless
data bind has processed this information correctly. As a result, the column REFSTR displays the
same REFSTR in both lines.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 96

A relation element has been added to the Relations folder of the import entry for the device
import. The data in the columns DEVICEGROUP and the REFSTR of the temporary table are used
to define the relation:

Defining a Role for Imported Objects

An object of the object class Role is created each time a responsibility is defined for an object based on a
preconfigured role type.

Role types define the type of responsibility a user or organization has for an object in the Alfabet database.
Role types are configured in the Reference Data functionality of the Configuration module of Alfabet.
They are then assigned to object classes in the Class Configuration functionality.

In the Responsibilities page view of an object, the user can now create a role by defining a responsibility
for either a user or an organization. In the editor for the role definition, the responsible user or organization
and the role type that defines the type of responsibility for the object is defined.

In the Alfabet class model, the relation between the role type, the object, and the responsible person or or-
ganization is only specified in the database table for the class Role. The information is not including any
object class properties of the type Reference or ReferenceArray of the object class Person or OrgaUnit or
the object class the role is defined for:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 97

To include information about roles for an imported object class in the ADIF import, you do not have to addi-
tionally include import of the Role object into your ADIF scheme via a separate ADIF import entry. Instead,
the creation of the Role object can be performed automatically during import of objects of the object class
for that the role is set with the following configuration:

1) Define an Attribute element that writes a unique property of the user (object class Person) or
organization (object class OrgaUnit) that shall have responsibility for the object via the role to the
temporary table. Usually this will be the name of the user or organization. Do not map the column
to a property of the target database table in the Alfabet database.

For information about the definition of Attribute elements see Creating Attribute
Entries to Map the Database Table Columns.

2) Define an Attribute element that creates a temporary database column neither filled with
external data during import nor mapped to a target object class property. In a later step, the
column is filled via an SQL query with the REFSTR of the user or organization.

3) Right-click the folder SQL Commands - OnStart and select Create SQL Command.

4) Click the new SQL command and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command. The SQL command is used to enter the REFSTR of the user or
organization responsible for the object via the role into the temporary database table.

• Command Type: Select DMLStatement.

• Result Type: Select Undefined.

• Ignore Errors: Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active: Select True to activate the SQL command.

• In the attribute window, click the Browse button in the Text attribute to open an editor for
the definition of the SQL query. Define the SQL query in the SQL Text tab of the editor.

The SQL query must be an UPDATE statement targeting the temporary database table. The query must fill
the column for the REFSTR of the user or organization responsible for the object via the role with the REF-
STR of the user or organization.

In the following example, the role Architect is defined for imported applications. In
the Attribute folder of the import entry for the object class Application, two At-

tribute elements have been defined for the import. The TECH_NAME property of
the object class Person is read into a database column ARCHITECT during import
without further import to a standard object class table of the Alfabet database. The
additional column ARCHITECT_REFSTR is defined for the temporary table without
defining data import or data integration into a standard object class table of the
Alfabet database.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 98

The following SQL command fills this column with the REFSTR of the user identified
via the technical name (property TECH_NAME) in the column ARCHITECT of the tem-
porary table:

UPDATE TMP_APPLICATION

SET ARCHITECT_REFSTR = (SELECT REFSTR FROM PERSON WHERE
PERSON.TECH_NAME = TMP_APPLICATION.ARCHITECT)

5) Right-click the folder Roles and select Create Role.

6) Click the new role and specify the following in the attribute window:

• Class Name: Enter Person, if the role is assigned to a user or OrgaUnit, if the role is assigned
to an organization.

• Database Column: Enter the name of the database column of the temporary table that will be
filled with the REFSTR of the user or organization the role is assigned to.

• Role Type Name: Enter the name of the role type the role is defined for. This is the value of
the object class property Name of the object of the object class RoleType assigned to the
role.

For the example above, the required definition of the role element is:

Defining an Indicator for Imported Objects

In the Evaluations and Portfolios functionality in the Configuration module in Alfabet, you can define
evaluation types that bundle a set of indicator types in order to evaluate objects in Alfabet. The evaluation
types are assigned to object classes in the Class Configuration functionality.

The indicator types defined for the evaluation types that are assigned to the object class are displayed on
the Evaluation Page View of each object in the object class. The user can define indicators for the object by
defining the value of the indicator type in the Evaluation Page View.

An object of the object class Indicator is created each time a value is entered for an indicator type on the
Evaluations page view of an object.

In the Alfabet class model, the value defined for an object's indicator type is only specified in the database
table for the class Indicator. The class Indicator specifies the object and the indicator type that each
value was defined for and the evaluation type that the indicator type is assigned to:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 99

To include information about indicators for an imported object class in the ADIF import, you do not have to
additionally include import of the Indicator object into your ADIF scheme via a separate ADIF import en-
try. Instead, the creation of the Indicator object can be performed automatically during import of objects
of the object class for that the role is set with the following configuration:

1) Define an Attribute element that writes the values for indicators that shall be set for the
imported objects into a column of the temporary database table. This value must have the format
required for the object class SemanticValue of the object class Indicator and correspond to the
configuration of allowed indicator values resulting from the indicator type and evaluation type
definitions. Do not map the column to a property of the target database table in the Alfabet
database.

For information about the definition of Attribute elements see Creating Attribute
Entries to Map the Database Table Columns.

For information about the configuration of indicator types and evaluation types see the
chapter Configuring Evaluations, Prioritization Schemes, and Portfolios in the reference
manual Configuring Alfabet with Alfabet Expand.

2) Right-click the folder Indicators and select Create Indicator.

3) Click the new indicator and specify the following in the attribute window:

• Database Column: Enter the name of the database column of the temporary table that will be
filled with the value for the indicator during import.

• Indicator Type Technical Name: Enter the values of the object class property
TechnicalName of the EvaluationType assigned to the indicator followed by | followed by
the values of the object class property TechnicalName of the IndicatorType assigned to
the indicator (EvaluationTypeTechnicalName|IndicatorTypeTechnicalName). If the indicator
shall not be assigned to an evaluation type, you can specify the technical name of the
indicator type (IndicatorType) only (IndicatorTypeTechnicalName).

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 100

Collecting Data from Multiple External Files or Database Tables in one Temporary Ta-
ble

Standard data import leads to the creation of one temporary table for the import of data from each external
file or database table. If you want to import data from multiple files with the same data structure, but dif-
ferent content, you can configure the ADIF import scheme to write data from multiple files / external data-
base tables to a single temporary table. This method enhances the performance of the import process, be-
cause fewer tables must be created and deleted from the database and the mapping of the imported data
records to the data records that already exist in the Alfabet database must only be executed once.

Configure the following to process data from multiple import sources in one temporary table
during import:

• Create an Import Entry and configure a complete data import to the target Alfabet
database table via the temporary table in the import entry. This requires that you specify

at least the attribute elements mapping data between the import data, the temporary
table and the Alfabet database table, and that you set the attribute Table Owner of this
import entry to True. This import entry is called the table owner in the following.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 101

• For each additional external import file/database table, create an Import Entry that
defines the import of the data to the temporary table defined in the table owner import
entry:

• The attribute Temp Database Table must be identical with the Temp Database
Table specified for the table owner.

• The attribute Table Owner must be set to False.

• The Attribute elements must specify the import of data to the temporary table
only. The import to the Alfabet database table must be left undefined.

• Data bind must not be defined.

Semi-Automatic Creation of Import Entry Definitions for Import Files

The ADIF configuration interface offers a mechanism that reads an import file and automatically creates

import entries and Attribute elements for the import entry matching the data in an import file. The au-
tomatically created entries are incomplete, because they can not cover the definition of import from the
temporary database table to the target Alfabet database table.

During automatic pre-configuration of the import entry, the name for the temporary table is de-
fined as TMP_<import file name without extension> and the name of the database columns for
the temporary table are derived from the column headers of the import file. The mechanism

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 102

substitutes white spaces and slashes with underscores, but other special characters in the file
name or column header names will be ignored or may even lead to invalid technical names for da-
tabase tables or columns.

You can either define a single import entry for an import from a single Microsoft® Excel® or comma-sepa-
rated format file or a file set for the import from multiple import files. For the import from XML files, a file set
covering import from all available elements in the XML can also be created via the mechanism.

Semi-Automatic Creation of an Import Entry for a Single Import File

To use this mechanism, the import file must be a Microsoft® Excel®, CVS or TXT file and must be available
in the local file system.

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme or the file

import set that you want to create an import entry for and select Create Entry From File. An
explorer window opens.

2) In the explorer, select the import file format in the drop-down list next to the field for the file name.

3) Navigate to the import file in the local file system and click Open. The new import entry is

added to the ADIF import scheme with Attribute elements that correspond to the import data
automatically added to the import entry

4) Review the names generated for the temporary table and the columns of the temporary tables for
technical correctness and uniqueness.

5) Complete and modify the automatically generated definition. For details, see: Defining Import of
External Data in an Import Entry.

Semi-Automatic Creation of Multiple Import Entries in a File Import Set

To use this mechanism, the import files must be Microsoft® Excel®, CVS or TXT files. All files for which im-
port entries shall be created must be located in the same directory and the directory must not contain
other files.

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme that you
want to create an import set for and select Create File Set from Directory. A selector window
opens.

2) In the selector, select the directory containing the import files and click OK. The new import set is

added to the ADIF import scheme with import entries including child Attribute elements
matching the import data.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 103

3) Review the names generated for the temporary table and the columns of the temporary tables for
technical correctness and uniqueness.

4) Complete and modify the automatically generated definition.

5) For details, see: Defining Import of External Data in an Import Entry.

Semi-Automatic Creation of an XML Import Set from an XML File

To use this mechanism, the import file must be a valid XML file and must be available via the local file sys-
tem.

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme that you
want to create import entries for and select Create XML Set from File. A selector window opens.

2) In the selector, select the directory containing the import files and click OK. The new import set is

added to the ADIF import scheme with import entries including child Attribute elements
matching the import data.

3) Review the names generated for the temporary table and the columns of the temporary tables for
technical correctness and uniqueness.

4) Complete and modify the automatically generated definition.

5) For details, see: Defining Import of External Data in an Import Entry.

Configuring SQL Commands for Optional Enhanced Import Fea-
tures

The basic import configuration can be enhanced by the definition of additional SQL commands. When cre-
ating ADIF import schemes via the ADIF configuration explorer, folders for SQL commands are automati-
cally added to the explorer if SQL commands can be defined for an element. The folders also indicate the
SQL command type.

In the XML of the ADIF import scheme each SQL command element has an attribute Type. For
each allowed command type, a separate folder named SQL Commands - <Type> is added to the
explorer. When SQL commands are defined in a folder, the Type attribute is automatically set in
the XML definition. When specifying SQL commands in an XML editor, the Type attribute must be
defined manually.

The following SQL command types are available:

Type Location in
ADIF
Scheme

Description

OnActivate Import sets
and import
entries

SQL commands of the type OnActivate define conditions for the execu-
tion of the element they are defined for.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 104

Type Location in
ADIF
Scheme

Description

For more information, see Configuring the Conditional Execution of Parts
of the Import Scheme.

Note: Changes triggered by OnActivate commands are not rolled back if
the option Commit After Run is set to False for the import scheme.

DataBind Import en-
tries

SQL commands of the type DataBind define how data in the temporary
tables are mapped with the data in the target Alfabet database table. The
definition of data bind commands is optional. Alternatively, the conditions

for data mapping can be defined in the Attribute elements of the im-

port entry via the attribute Is Key.

For more information, see Mapping External Data to Temporary Tables and
Alfabet Database Tables.

DataUpload Import en-
tries

SQL commands of the type DataUpload are required for data import from
external databases and active directories. The query is executed on the
external source. The output of the query must be a tabular data set that is
the external data that will be imported.

For more information, see Defining Data Upload from an External Database
in a Database Import Set or Defining Data Upload from an LDAP Table in
an LDAP Import Set.

OnStart Import en-
tries

SQL commands of the type OnStart are executed after data is written into
temporary database tables and prior to the SQL commands of the type
DataBind. SQL commands of the type OnComplete are executed after the
SQL commands of the type DataBind. The commands allow special opera-
tions to be executed on the Alfabet database prior or after import of data
to the target Alfabet database tables. The SQL commands can be defined
for the following purposes:

• Definition of customized debug information written to the log file
during execution of imports.

• This configuration is described in the section Configuring Logging
Parameters.

• Manipulation of the Alfabet database or the temporary database
table prior and/or after data import. The definition of SQL command
for this purpose is described in this section.

OnComplete Import en-
tries

One of the main features of the ADIF interface is the flexibility in configuration. The ADIF import scheme
can not only be configured to simply read data from an external file and add it to the Alfabet database, but
you can configure ADIF to perform additional operations on the Alfabet database, the temporary database

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 105

tables created during import, or, in case of import from an external database, on the external database ta-
ble at different stages of the processing of the ADIF import scheme. SQL queries of the type DLL statement
or DML statement can be defined in any number and order required.

If SQL queries are not sufficient to implement the desired import, custom DLLs can be ordered
from Software AG to provide functionality. The custom code is added to the ADIF import scheme
via an SQL command with the CommandType StoredProcedure. The correct setting of config-
uration elements and attributes depends on the custom code. A description is delivered with the
code on an individual basis.

StoredProcedures are executed in the same way as DML statements (iIn the order of the exe-
cution of SQL statements as described below).

When configuring SQL commands for an ADIF import scheme, the order of execution must be taken into
account. The elements of an ADIF scheme are executed in the following order:

• The SQL commands OnActivate are evaluated first and the respective elements of the ADIF
schemes are included or excluded from the execution schedule.

• All SQL commands of the type OnStart and the Command Type DDLStatement that target the
Alfabet database are executed in the order they are specified in the ADIF import scheme.

• Data is uploaded to the temporary tables for all import entries in the order specified in the ADIF
import scheme. For import from database import sets and LDAP import sets, data import to the
temporary tables is associated with the following processing steps:

• The connection to the external database is established.

• All DDL statements of SQL commands of the type OnStart targeting the external database
configured for the import entries in the import set are executed in the order they are defined
in the import set.

• The import entries are processed in the order they are configured within the database import
set as follows:

• All DML statements of SQL commands of the type OnStart targeting the external

database are executed in the order they are specified in the import entry .

• The SQL command of the type DataUpload is executed, and data is uploaded to the
temporary table.

• All DML statements of SQL commands of the type OnComplete targeting the external

database are executed in the order they are specified in the import entry .

• All DDL statements of SQL commands of the type OnComplete targeting the external
database configured for the import entries in the import set are executed in the order they are
defined in the import set.

• All import entries are processed as follows independent of the location inside or outside an import
set:

• All DML statements of SQL commands of the type OnStart are executed in the order they are

specified in the import entry .

• Data is imported to the target Alfabet database tables executing Attribute elements, SQL
commands of the type DataBind and automatic data mapping mechanisms of the ADIF
import process.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 106

• Relation elements are processed.

• The DML statements of SQL commands of the type OnComplete are executed in the order

they are specified in the import entry .

• All DDL statements of SQL commands of the type OnComplete targeting the Alfabet database
configured for the export entries in the ADIF export scheme are executed in the order they are
defined in the ADIF export scheme.

This section describes in general how to define an SQL command within an SQL Commands - OnStart or
SQL Commands - OnComplete folder of the ADIF configuration explorer and describes two possible use
cases for the definition of SQL commands:

• Use Case: Filling Empty Property Values with Default Values When Importing to Mandatory Object
Class Properties

• Use Case: Defining Import-Related Custom Properties

Creating SQL Commands

To specify an SQL command to be executed on the Alfabet database or an external target database:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands -
OnStart or SQL Commands - OnComplete that is automatically added to the explorer when an

import entry is created.

2) In the context menu, select Create SQL Command. A new SQL command is added as a child
node of the folder.

3) Click the new SQL command and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Command Type: In the drop-down list, select the type of SQL query that you want to define.
Select either:

• DMLStatement for SQL data manipulation statements like SELECT, INSERT,
UPDATE, DELETE, MERGE.

• DDLStatement for SQL data definition statements like CREATE, ALTER, DROP,
TRUNCATE, RENAME.

• DDL statements are only permitted to create, alter and drop new

database tables. It is not permissible to apply those commands to
standard Alfabet database tables.

• The ADIF import mechanisms are designed to provide a high level of
security. Always check whether an import can be performed via an
import mechanism provided by ADIF prior to defining your own SQL
commands to perform the import.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 107

• Result Type : Select Undefined.

• ApplyTo: If the SQL command is defined for import from an external database table, define
the database that the SQL command is executed on:

• local for execution on the Alfabet database

• external for execution on the external database

The execution of SQL commands on external database tables is not recom-
mended for the data import. External databases should be manipulated directly
in the source database only.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

• Text: Define the query for the command. Either write the query directly in the attribute field

or click the Browse button to open an editor for the definition of the query in the SQL
Text tab of the editor.

The queries to be executed on external database must match the syntax required on
the external database/LDAP table.

The text editor for the definition of queries in the ADIF configuration interface pro-
vides help for the definition of the query in separate tabs. For more information see
Defining SQL Queries for SQL Commands in the chapter Configuring ADIF Schemes.

Use Case: Filling Empty Property Values with Default Values When Importing to Man-
datory Object Class Properties

Some object class properties of object classes in the Alfabet meta-model are mandatory and must be de-
fined when new data records are added. You can identify mandatory properties in the Meta-Model sub-
tree of the ADIF configuration explorer by their yellow/red colouring:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 108

When creating new records in the Alfabet database during import, the mandatory information must be im-
ported for all new records. If the external data set that is imported does not provide the required infor-
mation, the required values must be written via SQL commands to the temporary table.

During import, the data is first written to the temporary table. Then SQL commands of the type OnStart
are executed prior to import of the data in the temporary table to the target database table of the Alfabet
database.

An SQL command OnStart can be defined that updates the temporary table, for example, by setting a de-
fault value for all empty fields in the column for the mandatory property.

For example, an import file containing data about devices does not provide version numbers for
all devices. The Version property is a mandatory property of the object class Device.

To add the missing version information to the temporary table resulting from import of the data
displayed above, the following SQL query can be defined in the Text attribute of an SQL com-
mand of the type OnStart. The query sets the version to 1.0 for all devices for which no version
information is available in the external data:

UPDATE TMP_DEVICE

SET Version =‘1.0’

WHERE Version = NULL;

Use Case: Defining Import-Related Custom Properties

It may be useful to store the information about the import directly in the Alfabet database table of the tar-
get objects. This may be useful, for example, for the following reasons:

• Configure import to only include objects that are not already marked as imported in a prior data
import.

• Inform the user via the Alfabet interface whether and/or when data has been last imported.

• Use the attribute to define a workflow template that starts a workflow only if the attribute is set to a
defined value. The ADIF import scheme can additionally be configured to start the workflows
automatically as part of the import process.

For more information see Configuring the Automatic Start of Workflows During Import.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 109

• Use the attribute as a condition for the execution of actions via the Alfabet interface (for example, in
workflow pre-conditions or in reports that only shows data that was imported via ADIF).

The custom property may contain the date the import was performed or a boolean value that distinguishes
between imported and not imported data.

The following configuration steps are required to store information about the import directly in
the database table of the imported objects:

• A custom property must be added to the object class for which data is imported. Custom
properties must be configured in the configuration tool Alfabet Expand. For information
about how to create a custom property, see the section Configuring Custom Properties
for Protected or Public Object Classes in the reference manual Configuring Alfabet with
Alfabet Expand.

• In the import entry triggering the import, define an empty database column in the
temporary database table and map it to the custom property of the target Alfabet
database table.

• Add an SQL command with an UPDATE statement in the folder SQL Commands -
OnStart that writes the information about the import to the column for the custom
property in the temporary table.

You must use the configuration capabilities in Alfabet Expand to add new property columns to a
database table of a Alfabet object class. It is not permissible to add a property column via a DDL
statement in the SQL commands of the ADIF scheme. Existing standard Alfabet database ta-
bles must not be altered by SQL commands via ADIF.

Configuring Execution of the Import Scheme Dependent on Cur-
rent Parameters

ADIF import schemes can be configured to adapt to current states of objects in the Alfabet database. You
can define conditions for the overall execution of parts of the ADIF import scheme or define conditions in
the command line of the ADIF console application that specify the choice of object data for execution,
which vary per import.

Configuring the Conditional Execution of Parts of the Import Scheme

The ADIF import scheme allows you to tie conditions to the execution of parts of the import definition. You
can define SQL commands that check the Alfabet database for the availability of data and configure import
sets or import entries to be executed only if a configured SQL query executed on the Alfabet database de-
livers either a positive or negative result.

Conditions can be defined for the following elements of the ADIF import scheme:

• Database import set

• File import set

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 110

• XML import set

• Import entry

If a condition is specified for an element, this element and all child elements thereof are only executed if
the condition is met.

To specify a condition for execution of a part of an ADIF import scheme:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands -
OnActivate that is automatically added to the explorer on creation of an element.

2) In the context menu, select Create SQL Command. A new SQL command is added as a child
node of the SQL Commands - OnActivate folder.

3) Click the new SQL command and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Apply to: Select local. SQL commands of the type OnActivate can only be executed on the
Alfabet database.

• Result Type: In the drop-down list, select one of the following:

• PositiveCheck: If the data set that results from the execution of the query defined in
the Text attribute is empty, the current element of the ADIF scheme will not be
executed and the message defined in the Message attribute will be written to the log
file.

• NegativeCheck: If the data set that results from the execution of the query defined
via the Text attribute is not empty, the current element of the ADIF scheme will not be
executed and the message defined in the Message attribute will be written to the log
file.

• Text: Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is checked according to the settings of the attribute Result Type in order to specify
whether the ADIF element is executed. Either write the SQL query directly in the attribute

field or click the Browse button to open an editor for the definition of the SQL query.
Define the SQL query in the SQL Text tab of the editor.

• Message: Enter a text that shall be written to the log file in case the ADIF element is not
executed.

• Ignore Errors: Select True if you want the import to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
import to be executed if an error in the SQL statement occurs.

• Is Active: Select True to activate the check. Select False to deactivate the check.

The condition for the check can be defined in conjunction with parameters set during runtime of the ADIF
import.

For more information, see Configuring Logging Parameters.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 111

Configuring Import Dependent on Parameters

Import can be configured to be based on parameters defined for example in the command line of the ADIF
console application or in the JSON body of the RESTful service call when starting an import. This allows you
to reuse an ADIF import scheme for various similar imports that only vary in small aspects.

It is not possible to define parameters for ADIF imports executed via the user interface. Never-
theless, these imports can be executed with the default values for the parameters if these de-
fault values are defined in the ADIF import scheme. If an ADIF scheme configuration includes
mandatory parameters, the execution option in the Adif Jobs Administration (ADMIN_Adi-
fJobs) functionality.

The following information is available:

• Configuring an ADIF Import Scheme to Use Parameters in Import Definitions

• Defining Parameter Values On Execution of ADIF Schemes

• Defining Parameter Values During Testing of the ADIF Scheme

Configuring an ADIF Import Scheme to Use Parameters in Import Definitions

Parameters have to be defined in the ADIF scheme. Only parameters that are defined in the ADIF scheme
can be assigned a value during execution of the ADIF scheme.

To define the parameters for an ADIF scheme:

1) In the explorer, click on the ADIF import scheme that you would like to start with parameters.

2) In the attribute window, define the parameter relevant attributes:

• Parameters Backward Compatibility Mode: Make sure that the parameter is set to False.
This is the default value for new ADIF schemes.

ADIF schemes defined prior to Alfabet 10.4 will have the compatibility mode set to
True. If you reset the compatibility mode for these schemes, parameter definitions
must be added to the ADIF import entries in the scheme and the way parameters are
defined in the SQL commands must be revised.

Please note that ADIF schemes with a Parameters Backward Compatibility Mode
set to True which contain parameter definitions cannot be scheduled for execution
via the Job Schedule functionality.

• Arguments Table Name: At the start of an ADIF import, the parameter values are written to
a temporary database table. The name of the temporary database table is configurable in the
ADIF import scheme. By default, it is named ADIF_ARGS.

For each parameter, a row is displayed in the database table with two columns:

• ARG_NAME for the storage of the parameter name.

• ARG_VALUE for the storage of the parameter value.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 112

3) For each parameter that you would like to use in one of the import entries in the scheme, right-
click the Parameters child node of the ADIF import scheme and select Create Parameter from
the dropdown list.

4) Click the newly added @Parameter node and define the following attributes in the attribute

window:

• Name: Define a unique name for the parameter. The parameter name must start with @ and
must not include other special characters or whitespaces. It can be used in the SQL
commands and attributes of the ADIF import scheme and is substituted with the current
value of the parameter during execution of the ADIF import scheme.

• Parameter Type: Select the data type of the parameter value from the dropdown list.

The parameter types StringArray and ReferenceArray can be used if a query shall
define that a string or the REFSTR of a referenced object shall be within an allowed
range of string or REFSTR values.

• Default Value: Optionally, define a default value that shall be used if no parameter value is

provided during execution of the ADIF scheme. Click the Browse button on the right of the
attribute's field to open the editor for definition of the default value. Note the following about
the specification of values:

• For the definition of dates enter the date into the Value field in the format defined in
the culture setting of the language you are currently using to render the Alfabet
Expand user interface or click the Select button and select a date from the calendar.

• If the parameter is placeholder for a string and used in a query in a WHERE condition
that checks whether a value is one of a range, the Parameter Type must be
StringArray. The Value field in the editor of the Default Value attribute displays a
text field for StringArray parameters. Define the range of allowed values in the text
field with each value in a separate row. In the query referring to the array, the
parameter must be added in brackets:

WHERE app.OBJECTSTATE IN (@appState)

• If a string value contains a single quote (like for example in O'Hara), the single quote
will be automatically escaped with a second single quote when the parameter value is
processed. Escaping the single quote with a second single quote is a requirement for
including it into SQL queries. For security reasons, the second single quote is also
added in strings to prevent SQL injection.

• % can be used as wildcard in strings and texts. It is not allowed to define a wildcard in a
value of a string array.

• Boolean values can be selected from a dropdown list. Please note that object class
properties of the type Boolean that are neither mandatory nor having a default value
defined might be set to either true, false or NULL. If the default value is False, only
object class property values defined as false will be returned, while NULL values will
not be returned. This behaviour can be handled via the SQL commands in the ADIF
scheme.

• For ReferenceArray properties no default values can be defined.

• Mandatory: Select True if the ADIF execution should fail with an error message if no value is
defined for the current execution. Select False, if the ADIF execution should be executed even
if the parameter is not defined for the current execution. The parameter will then be

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 113

substituted with the value defined in the attribute Default Value. If no default value is
provided, the parameter will be substituted with NULL.

In ADIF execution, WHERE clauses in SQL commands containing a parameter are not
removed from the query if no value is provided. To make sure that the query result is
meaningful if the parameter value is not provided during ADIF execution and the pa-
rameter is therefore set to NULL, you should define the query to accept NULL val-
ues. For example, to ensure that results are returned if a date compared to an appli-
cation's start date is not returned, the WHERE clause should be written as:

WHERE APPLICATION.STARTDATE >= @StartDate OR @StartDate IS
NULL

5) Use the parameters defined in the Parameters folder in the ADIF import entries of the ADIF import
scheme in the following settings according to demand:

• In the SQL queries defined for any SQL command.

• In the Message attribute of SQL commands of the Result Type DebugMessage.

• In the Connection String attribute of a database import set.

To include a parameter, substitute the actual value with the parameter name within the query or
the text string. Please note that parameters are to be included without any single quotes around
the parameter name. If the parameter type is requiring definition of single quotes around the value,
this is handled by the software during substitution of the parameter name with the parameter
value.

For example, a query using the string parameter @orga may be written as:

SELECT app.NAME, app.VERSION

FROM APPLICATION app, ORGAUNIT org

WHERE app.RESPONSIBLEORGANIZATION = org.REFSTR

AND org.NAME LIKE @orga;

If it is substituted during runtime with the value Trade%, the query will read:

SELECT app.NAME, app.VERSION

FROM APPLICATION app, ORGAUNIT org

WHERE app.RESPONSIBLEORGANIZATION = org.REFSTR

AND org.NAME LIKE’Trade%';

A debug message defined in the attribute Message of an SQL command of the Result
Type DebugMessage to be written in the import log file during import of the application
data can refer to the current organization as well:

Import of applications with responsible organization @orga.

During runtime, it will be converted to:

Import of applications with responsible organization Trade%.

StringArray or ReferenceArray parameters need to be included into the query as follows:

WHERE APPLICATION.STATUS IN (@StringArray)

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 114

Defining Parameter Values On Execution of ADIF Schemes

Parameters values are defined during runtime on execution of the ADIF import or export. The parameter
name is case sensitive. When defining parameters for execution of the ADIF import or export, you must re-
fer to the parameter name exactly as written in the ADIF scheme, including the starting @. Note the follow-
ing about the definition of values for the parameters:

• If a string value contains a single quote (like for example in O'Hara), the single quote will be
automatically escaped with a second single quote when the parameter value is processed. Escaping
the single quote with a second single quote is a requirement for including it into SQL queries. For
security reasons, the second single quote is also added in strings to prevent SQL injection.

• Parameter values for data types like string or date are defined without single quotes at the
beginning and end. If single quotes are required in the query for the data type, they will be
automatically added by the ADIF mechanisms.

• Boolean values must be defined as 1 (true) or 0 (false):

@MyBooleanValue 1

• String array and ReferenceArray values must be separated with \r\n:

@MyArrayValue First\r\nSecond

Whether and how command line parameters can be defined at runtime depends on the way the ADIF
scheme is executed:

• Starting ADIF via the console application

To specify parameters in the command line of the ADIF console application, start the console application
with the command line option -<parameter name> <parameter value>. A command line option must be
specified for each parameter.

To specify the parameters @lastupdate and @orga, the command line could for exam-
ple be defined as:

ADIF_Console.exe -import -msalias Alfabet -alfaLoginName
UserName -alfaLoginPassword pw1234 -scheme AppImport -
importfile C:\Import\Applications.zip -@lastupdate 09/06/2018
-@orga ITGroup

For general information about starting ADIF via the console application, see Executing
ADIF via a Command Line Tool.

• Starting ADIF via a RESTful service call to the RESTful API of the Alfabet Web Application

Parameters are defined in the JSON body of the request in the field UserArgs returning a JSON object
with one field for each parameter in the format "UserArgs":
{" arg1name ":" arg1value "," arg2name ": " arg2value "}. The field name must be identical
to the variable name and the field value defines the variable value for the current execution of the ADIF im-
port scheme.

To specify the parameters @lastupdate and @orga, the JSON body of the request
could for example be defined as:

{

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 115

"Scheme": "AppImport",

"UserArgs": {"@lastupdate":"09/06/2018","@orga":"ITGroup"},

"Verbose": false,

"Synchron": true

}

If the specification of parameters is not correct in the call, the ADIF job is started, but
execution might fail. Information about the success of the ADIF job execution is not re-
turned to the RESTful service call. The return value from the RESTful service call will in-
form about the last successful execution step, which is start of the ADIF job. The suc-
cess of the ADIF job execution can then be checked for example via the ADIF Jobs Ad-
ministration functionality.

For more information about the ADIF Jobs Administration functionality, see Executing
and Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities
in the Alfabet User Interface.

• Starting ADIF via the ADIF Jobs Administration functionality in the Alfabet User Interface

The ADIF jobs administration functionality does not provide a mechanism to set parameter values. If an
ADIF job shall be started via the ADIF Jobs Administration, it should not contain parameters. If the ADIF
scheme includes parameter definitions, it can only be started via the ADIF Jobs Administration function-
ality with the default values defined in the ADIF scheme for the parameters. The scheme must not include
mandatory parameter definitions.

For general information about starting ADIF via the ADIF Jobs Administration func-
tionality, see Executing and Controlling ADIF via the ADIF Jobs Administration and My
ADIF Jobs functionalities in the Alfabet User Interface.

• Starting ADIF via an event

If you start the ADIF job via an event, parameter values can be handed over during execution of the event
via a query defined in the event template. In the attributes of the event template, the following attributes
must be set:

• Variable Names: If the ADIF scheme contain parameter definitions, the names of the
parameters must be written as comma separated list into this attribute. The specification
must be case sensitive. The values for the parameters must then be provided with the
attribute Values for Variables via Query / Values for Variables via Query as Text.

• Values for Variables via Query / Values for Variables via Query as Text: The query must
return the values for the parameters defined in the attribute Variable Names in the same
order. The query can be defined either via native SQL or via Alfabet query. Use the Value for
Variables via Query attribute to define an Alfabet query. Use the Values for Variables via
Query as Text attribute to define a native SQL query. Alfabet query language parameters can
be used in the query. The base object returned via the Alfabet query language parameter
BASE depends on the way an event has been triggered. For events triggered via a workflow or
wizard, BASE returns the REFSTR of the object the user was working on in the wizard step or
workflow step triggering the event. For events triggered via an REST API call event, the BASE
object is the same as the one for the event triggering the event.

The query must return a dataset with the column names identical to the parameter names defined with the
attribute Variable Names.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 116

For example if Variable Names is defined as @AppName,@AppVersion, the query
might be defined as:

SELECT REFSTR, NAME AS’@AppName', VERSION AS’@AppVersion'

FROM APPLICATION

WHERE REFSTR = @BASE

For general information about starting ADIF via the Alfabet RESTful services, see the ref-
erence manual Alfabet RESTful API.

• Starting ADIF via a button in the filter panel of a configured report or in the toolbar of an
Alfabet view

If an ADIF job is started via a button in the filter panel of a configured report or in the toolbar of an object
view, the values for the parameter definition in the configured report can be set as follows:

• If the button is defined for an object view or a configured report that is assigned to a base
object class via its Apply to Class attribute, the information about the base object the object
view or configured report is opened for is returned as @BASE. If the ADIF scheme has a
parameter definition with the Name set to @BASE and the Parameter Type set to Reference,
this parameter will be substituted with the REFSTR of the current object on execution of the
ADIF scheme.

• If the button is defined for a configured report that has filter fields, the values set in the filter
fields are handed over as parameter values to the ADIF scheme when the ADIF job is started
via the button. In the ADIF scheme, the Name of the parameter must be identical with the
Name of the filter field and the Parameter Type must be identical to the data type returned
by the filter field.

Please note that the filter field name must start with an @. Standard filter fields that are automatically gen-
erated by default in reports of the type Query based on an Alfabet query are starting with a colon instead
of @ and must be adapted manually.

Comparison between filter fields and parameter names is case sensitive.

If the filters of a configured reports are not set when the ADIF job is executed, no value will be provided for
the ADIF scheme parameter. Therefore ADIF scheme parameters filled with values from filter fields that are
not mandatory in the configured report should not be defined as mandatory in the ADIF scheme. Either a
default value should be defined for the parameters or NULL value handling should be taken into account in
the SQL commands of the ADIF scheme.

For general information about starting ADIF via a button, see Executing ADIF via a But-
ton in the Alfabet User Interface.

Defining Parameter Values During Testing of the ADIF Scheme

When debugging an ADIF scheme with the ADIF Debugger, no command line can be defined. To set param-
eters for testing, the parameter values for testing can be written into the ADIF scheme.

To specify parameter values for testing in the ADIF scheme:

1) In the ADIF explorer, click the ADIF scheme that you want to specify parameter values for.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 117

2) In the attribute window of the ADIF scheme, set the following attributes:

• Debug Arguments: Define the values for the parameters used in a comma-separated string.
The format of the string must be <parameter name>=<value>. Please note that the values
must not be written into single quotes. If single quotes are required in the query for the
parameter data type, for example for strings, these will be set automatically when
substituting the value in the query.

Mandatory parameters must be defined in the Debug Arguments to test the ADIF scheme via the ADIF De-
bugger. If the parameter is not mandatory and no value is defined for the parameter in the Debug Argu-
ments, the ADIF Debugger will use the default value defined for the parameter. If no default value is de-
fined, the parameter will be substituted with NULL.

For example, to specify import of applications for which the organization responsible for the ap-
plication is variable and the last update of application data is variable, the Debug Arguments
attribute can be specified as:

@lastupdate=09/10/2012,@orga=ITGroup

Configuring Logging Parameters

During import via the ADIF console application log messages are written to:

• A temporary database table in the Alfabet database.

• The log file of the ADIF console application. By default, this is the log file ADIF_Console.log in the
working directory of the ADIF console application.

When the ADIF console application is run asynchronously in remote mode, no import-re-
lated information will be written to the log file of the ADIF console application. The con-
sole application handles the data to the Alfabet Server and closes the process after suc-
cessful data submission.

Logging information is written to a log file in the following format:

<date and time> <message type> <message text>

For example:

2010-11-30T10:43:24.31Z DEBUG_INFO Query returns 314 records

Log messages are written to the log file in the language defined in the cultures of the Alfabet database.
When the ADIF console application is run with an server alias, the culture setting defined as the default in
the configuration of Alfabet is used. When the ADIF console application is run with a remote alias, the cul-
ture setting of the remote alias configuration is used.

For information about configuring cultures for the Alfabet database, see the section Specifying
the Cultures Relevant to Your Enterprise in the chapter Localization and Multi-Language Support
for the Alfabet Interface. in the reference manual Configuring Alfabet with Alfabet Expand.

For information about specifying the culture setting of the remote alias, see the section Configu-
ration Attributes for the Alfabet Components in the reference manual System Administration.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 118

The timestamp is the UTC time (coordinated Universal Time) and may therefore differ from the time in your
local time zone. The timestamp is written in ISO 8601 combined date and time format as year-month-day-
Thour:minutes:secondsZ.

The message type can be one of the following:

• ERROR: An error occurred. The message describes the type of error.

• WARNING: Problems were encountered during the execution of the utility that are not as severe as
an error. The process was executed but the result should be checked. The message describes the
problem.

• INFO: Information about the normal execution of the utility is given.

• DEBUG_INFO: Information about the import process is given. This information is also stored in the
Alfabet database in a temporary database table.

The debug info returns the number of records that are changed during the import pro-
cess. This number can be higher than the number of objects directly affected by the im-
port process. For example, if the ADIF scheme triggers deletion of objects from the
Alfabet database, objects that are defined as dependent objects are also deleted or
changed. For example, references to the deleted objects have to be removed from prop-
erties of other objects or from the RELATIONS table. The DEBUG_INFO returns the over-
all number of objects changed, created or deleted in the database, which may be multi-
ple objects per deleted object.

During the import process, emails containing log information can be sent in a defined time interval to a con-
figurable email address.

The email is meant as an alive message of the system informing the recipient about the availabil-
ity of an active ADIF process. The content of the email is limited to the one-line content that is
written to the log file at the moment the email is generated and is therefore not suitable for de-
bugging.

The storage of log information and the sending of emails with process-related information are configurable
either in the ADIF import scheme configuration or in the command line when starting the ADIF console ap-
plication. When a configuration can be done both in the ADIF import scheme and the command line, the
specification via the command line options overwrites the configuration in the ADIF import scheme.

The following table gives an overview of the configuration options:

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

Time interval for
sending emails
containing current
log information

Debug
Heart Beat

-heartbeat
<time in
minutes>

Specify the time interval in minutes between send-
ing emails with the current log message of the ADIF
console application during import. By default, the
debug heart beat is set to -1, that means no emails
are sent.

NOTE: If the import process is finished before the
time interval elapsed for the first time, no email is
sent.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 119

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

email address of
the recipient of
the log infor-
mation

Recipient
Mail

-recipient-
mail <email
address>

Specify the email address of the person that shall
receive the current log message of the ADIF con-
sole application via email in the configured time in-
terval.

email address
used as sender
address in the
emails with log in-
formation

Sender Mail -sendermail
<email ad-
dress>

Specify the email address that shall be used as
sender email address for emails sent via the ADIF
console application.

Name of the log
file of the ADIF
console applica-
tion

- -logfile
<filename>

Specify the name of the log file of the ADIF console
application. Allowed file extensions are.log and.txt.
The default name is ADIF_Console.log

Location of the log
file of the ADIF
console applica-
tion

- -logpath
<path>

Specify the path to the log file of the ADIF console
application. By default the log file is stored in the
working directory of the ADIF console application.
The ADIF console application process must have
write access rights to the specified directory.

Amount of data
written to the log
file

- -logverbose If set, all information about the process is written
to the log file. If not set, only error messages and
information about the process start and end is
written to the log file.

Removal of old log
messages from
the log file

- -logclear
<number of
days>

If -nologappend is set, a new log file is created
each time the utility is used with the same specifi-
cation of -logfile and -logpath. The log file
name is extended with a timestamp specifying the
current UTC time.

If -nologappend is not set, logging information is
appended to the existing log file each time the util-
ity is used.

NOTE : To restrict the file size, you can set the -
logclear option to delete old log messages.

Creation of a new
log file for each
process started

- -nologap-
pend

This option can only be used if -nologappend is
not set. If -nologappend is set, the -logclear
setting is ignored.

During logging, the log file is scanned for log mes-
sages with a timestamp older than the number of

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 120

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

days specified with -logclear and these mes-
sages are deleted.

NOTE: The scanning process can lead to drawbacks
in performance.

Configuring Log Message Content

ADIF export schemes can be configured to include customer-defined log messages and data sets found via
SQL commands in the log files during execution of the ADIF import scheme. Log file content can be added
to the ADIF import scheme via SQL command elements. SQL command elements for debug messages can
be located in any SQL Commands - <Action Type> folder except the SQL Commands - DataBind folder.

During import execution, the SQL commands in the ADIF import scheme are executed in the order specified
by the command location in the XML definition. When the SQL command is due for execution, the message
defined in the SQL command element and, if specified, the result of the SQL query as data set, are dis-
played in the log message.

In an ADIF import scheme that imports data about devices from an XML file, information about
the number of devices that are updated in the Alfabet database during import shall be written to
the log file during the import process. An SQL command of the Result TypeDebugDataSet is

added to the SQL Commands - OnComplete folder of the import entry that triggers the im-
port of device data from the XML file:

In the property window, the attribute Result Type is set to DebugDataSet. The data set to be
displayed in the log file is defined by the SQL query defined in the attribute Text. The SQL query
defined in the example finds the name and version of the devices in the temporary table that
were bound to an existing object in the Alfabet database.

Prior to the data set, a text explaining the data set shall be displayed in the log file. Therefore, an
explanatory text will be added in the Message attribute.

When executing the import, the Message text and the data set resulting from SQL query execu-
tion will be added to the log file when the SQL command is due to be executed in the processing
order of the ADIF import scheme:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 121

Debug messages and data sets can refer to the current import conditions via variables that de-
pend on command line arguments of the ADIF_Console.exe when starting the import.

For information on the use of variables to refer to the conditions defined in the command line,
see Configuring Execution of the Import Scheme Dependent on Current Parameters.

Inserting a Static Text Message

To add a static text message to the log file:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands - <Action
Type> that is executed in the order of commands when you want the text message to be
displayed.

2) In the context menu, select Create SQL Command. A new SQL command is added as a child
node of the SQL Commands - <Action Type> folder.

3) Click the new SQL command and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Result Type : Select DebugMessage.

• Message: Enter a text that shall be written to the log file at the position of the execution of
this SQL command.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

Inserting a Data Set

To include data from the database in the log file:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands - <Action
Type> that is executed in the order of commands when you want the text message to be
displayed.

2) In the context menu, select Create SQL Command. A new SQL command is added as a child
node of the SQL Commands - <Action Type> folder.

3) Click the new SQL command and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 122

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Result Type : Select DebugDataSet.

• Message: Enter a text that shall be written to the log file at the position of the execution of
this SQL command prior to the data set resulting from the SQL query defined.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is written to the log file at the position that indicates the execution of the SQL
command. If a text is also defined in the Message attribute, this text is written to the log file
prior to the data set. You can either write the SQL query directly into the attribute field or click

the Browse button to open an editor for the definition of the SQL query. Define the SQL
query in the SQL Text tab of the editor.

• Message: Enter a text that shall be written to the log file as an introduction to the data set.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
import to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

To set the parameters in the ADIF import scheme:

1) In the explorer of the ADIF configuration interface, click the import scheme that you want to
configure. The attributes of the ADIF import scheme are displayed in the attribute window on the
right.

2) In the attribute window, set the parameters listed in the table above as applicable.

Configuring the Import Audit History

In Alfabet, object classes can be configured to have an audit history.

For information about how audit information is stored in the database, see Audit History Storage in the
chapter The Alfabet Meta-Model in the Alfabet Database.

The ADIF import scheme allows you to configure the audit history storage during the ADIF import.

The ADIF import definitions should never include the audit tables. Changing the audit table for an
object can lead to severe database inconsistencies and may result in an error occurring.

Clean-up of the audit tables

Sometimes a change is performed to an object which overwrites the value for a property with the value al-
ready available in the database table. For example, the property State of an object is set to value ’Plan' even
though the value was already ’Plan'. This is in fact not a change from the logical perspective, but techni-
cally a redundant UPDATE statement is executed. When such a change is performed to the object, a new
line is added to the audit table. This line indicates that a change has been made, but the entry is obsolete in
the audit table because all object class properties remain unchanged.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 123

The ADIF interface allows the import scheme to be configured so that the obsolete lines are automatically
deleted/consolidated in the audit table. Configuration is done per Import Entry, because the setting is only
required for classes for which an audit table exists.

It is recommended to configure audit table clean-up for all object classes that are configured to
have an audit history. Otherwise, users viewing the audit history via the Alfabet interface will see
useless information and the size of the Alfabet database will increase considerably.

1) In the explorer, click the Import Entry that you want to configure auditing for.

2) In the attribute window, set the Squeeze Audit Table attribute to True.

Information about the Import User

The user who is triggering the ADIF import is defined as the user performing the change. When starting the
ADIF console application, the user specified via the command line option -alfaLoginName is added as user
performing the changes caused by the import process into the audit tables. If the command line option -
alfaLoginName is not used, ALFABET_INTERN is written into the audit tables to specify the user responsi-
ble for the changes.

The current user name is also used to set properties of objects that are created or changed dur-
ing import. All properties in the group Artifact have properties that store information about
changes to the object.

The following properties are set when an object is created or updated:

• The property LAST_UPDATE is set to the current date.

• The property LAST_UPDATE_USER is set to the current user.

The following properties are additionally set when an object is created:

• The property CREATION_DATE is set to the current date.

• The property CREATION_USER is set to the current user.

During import, the LAST_UPDATE_USER and the CREATION_USER are specified as ALFABET_IN-
TERN if the command line option -alfaLoginName is not set.

Configuring the Automatic Start of Workflows During Import

Alfabet supports your enterprise in defining and maintaining workflows in which you can track and coordi-
nate the activities that should be performed by various persons in a particular sequence.

For more information about the workflow functionality, see Executing Workflows and Participat-
ing in Workflow Steps in the reference manual Getting Started with Alfabet.

Workflows can be automatically started as part of the import triggered by ADIF. This may be useful to en-
sure that new data in the Alfabet database is post-processed by users responsible for data maintenance.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 124

The automatic start of workflows requires the following configuration:

• A workflow template must be defined in Alfabet Expand.

• An element Workflow Entry must be added to the ADIF import scheme that specifies the
name of the workflow template.

The definition of workflow templates is described in the chapter Configuring Workflows in the reference
manual Configuring Alfabet with Alfabet Expand.

Take the following into account when configuring the workflow template and the ADIF import scheme:

• The workflow must be configured to be started automatically.

• Make sure that the imported objects can be identified via a query in the workflow template to enable
starting of workflows for imported objects only. One method is the definition of a custom property
for the target class for import in the Alfabet meta-model using Alfabet Expand. The custom property
is then filled during import e.g. with the import date that is filled during import.

For details, see Use Case: Defining Import-Related Custom Properties in the section Configuring SQL Com-
mands for Optional Enhanced Import Features.

For example, a new custom property ImportDate (Techname: IMPORTDATE) is defined
for a target object class, for example for the object class Device. The ImportDate
property has the data type Date and is filled with the current date during update. The
workflow template can now be configured with the following query to find the objects
for which workflows will be started:

SELECT REFSTR

FROM DEVICE dev

WHERE dev.IMPORTDATE = @TODAY

The query finds all objects of the object class Device for which data was updated or
created on the current day. As the query is executed during import, the import date
matches the start date of the workflow.

• Start of workflows is executed during import after execution of all import entries, but prior to
dropping temporary tables. Nevertheless, temporary tables are ignored by Alfabet functionalities
and the queries defined for workflows do not interpret data from temporary tables.

• Workflow entries are ignored when the attribute Commit After Run of the import scheme is set to
False.

To add a workflow entry to the ADIF import scheme:

1) In the explorer of the ADIF configuration interface, right-click the ADIF import scheme and select
Create Workflow Entry. A new node is added to the explorer with a default name for the workflow
entry. Under the workflow entry node, a folder for the creation of SQL commands to be executed
on activation of the workflow entry node is automatically added.

2) In the attribute window of the workflow entry, set the following attributes:

• Name: Enter a meaningful name for the workflow entry.

• Comments: Enter a comment that provides information about the functionality implemented
within the workflow entry.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 125

• Workflow Template: In the drop-down list, select the name of the workflow template.

• Is Active : Select True to activate the execution of all import entries within the import set.
Select False to deactivate the execution.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 126

Chapter 5: Configuring Data Export with ADIF

This chapter guides you through the process of data export from the Alfabet database with the ADIF export
scheme.

The Export Process

Data can be exported from Alfabet database tables to database tables of external databases, Microsoft®
Excel® files, comma-separated data format files (.csv or.txt) and XML files.

Export is triggered by ADIF export schemes that are configured by the customer via SQL commands. An
export scheme can trigger export to multiple database tables or files of one or different file formats.

If you export of a huge amount of data to a single file, the time required for processing the data
and the memory usage during processing of data may be exceedingly high. To avoid performance
problems it is recommended to configure the ADIF export scheme to export data into multiple
files. this can for example be performed to filter object export on basis of a value of one of the
object class properties. For example, by exporting all applications with a name starting with A
into one file, all starting with B into another file and so on.

The export process is started via the ADIF debugger or via the ADIF console application.

When starting the ADIF export, the following process is executed:

1) Validate the export scheme. Export is stopped in case validation fails.

2) Create temporary directory on server side to use it for log and export files.

3) Write command line arguments to the Alfabet database. If the export is triggered by an export
scheme located in an XML file, the export scheme is also written to the database.

4) Perform export steps configured in the ADIF export scheme. The following descriptions of export
configuration provide information about which specific action is triggered by the individual
elements of the scheme. During export execution, export files are created in the temporary
directory for export to XML, CSV or Microsoft® Excel® formats. For export to external database
tables, data is written to the external database.

5) Create ZIP file from all files generated in the temporary directory.

6) Upload the ZIP file to the ADIF_SYS folder of the Document Explorer of the Alfabet database.

7) Upload log information about the export process to the ADIF_SYS folder of the Document
Explorer of the Alfabet database.

8) Delete the temporary directory on the server-side created prior to export execution and all content
of the directory.

9) Download ZIP file to the location specified in the command line arguments.

10) Download the log file content to the console log file.

11) Unzip ZIP file if the unzip action is requested with the command line parameters.

This chapter describes how to configure different export features within the ADIF export scheme. The ex-
port process is highly configurable to meet individual customer requirements concerning the resulting data
output.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 127

Basic Configuration of Data Export

An ADIF export scheme is an XML object that can be edited either in an XML editor or in the ADIF configura-
tion interface that is provided as part of the configuration tool Alfabet Expand. In the ADIF configuration
interface, the XML elements are displayed as nodes in the explorer, while the attributes of an XML element
are displayed in the attribute window on the right.

All information and commands required to export data from the Alfabet database are defined via the XML
elements of the ADIF export scheme. The XML elements must follow a defined sequence that is determined
by an XSD scheme. In the ADIF explorer, the generation of elements via the context menu of the explorer
nodes guides you through the creation of all required elements. Only elements that are allowed as sub-ele-
ments can be created as child nodes of an explorer node. When you define the ADIF export scheme in an
XML editor, you must consult the XSD scheme for information about the permissible sequence of objects.

The following elements are part of the ADIF export scheme:

XML Element
Name

Caption in
the ADIF In-
terface

Purpose

ADIF_Ex-
portScheme

Export
Scheme

Element for the configuration of basic overall export execution parame-
ters.

XmlEx-
portSet

Entry for
Classes
(XML)

Structuring element that is a container for elements defining the export
to XML files.

FileEx-
portSet

Entry for
Classes (Ex-
cel)

Structuring element that is a container for elements defining the export
to Microsoft® Excel® files or CSV files.

NOTE: Via the ADIF interface this element is only available for the struc-
turing of Excel Export Entries.

DBExportSet DB Export
Set

Element defining the connection to an external database.

ExportEntry Entry Element defining the content of the export to one external database ta-
ble or one external file.

SQLCommand SQL Com-
mand

Sub-element of ExportEntry elements for the definition of SQL Com-
mands to be executed during export.

AlfaMethod Sub-element of ExportEntry elements to assign custom code to the
entry. AlfaMethod elements are only relevant if custom code has been
developed by Software AG for special customer requirements. Infor-
mation about the configuration is provided individually with the custom
code.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 128

This section describes the basic configuration required to trigger simple data export to different file for-
mats or to external database tables. The basic configuration can be enhanced to allow complex export sce-
narios by adding the special features described in the following sections:

• Configuring Logging Parameters

• Configuring Execution of the Import Scheme Dependent on Current Parameters

• Configuring the Conditional Execution of Parts of the Import Scheme

• Configuring Import Dependent on Parameters

• Configuring Logging Parameters

• Configuring Log File Storage and Handling

• Configuring Log Message Content

Creating an ADIF Export Scheme

Do the following to create a new ADIF export scheme:

1) In the explorer, right-click the ADIF Schemes root node and select Create Export Scheme. The
new export scheme is added to the explorer and the attribute window of the new export scheme is
displayed on the right.

2) In the attribute window, set the following attributes for the ADIF export scheme:

• Name: Enter a unique name. The Name is used to identify the ADIF scheme in technical
processes. It must be unique and should not contain whitespaces or special characters.

• Caption: Enter a meaningful and unique caption. The caption is used to identify the ADIF
import scheme in the Alfabet user interface in the ADIF Jobs Administration and My ADIF
Jobs functionalities.

• Description: Enter a meaningful and short description of the result of the ADIF import. The
description is displayed in the Alfabet user interface in the ADIF Jobs Administration and
My ADIF Jobs functionalities.

• Commit After Run : If set to True, the result of the data export is written persistently to the
external files or the external target database. If set to False, the export process is rolled back
after execution and no changes are written to the external database or files. It is
recommended to set Commit After Run to False for a new export scheme for export to an
external database to allow debugging without the risk to corrupt the external database. After
successful testing of the data export and verification that the resulting changes to the
external database are as expected, Commit After Run can be set to True to perform regular
data export.

The following restrictions apply to setting Commit After Run to False:

• Commit After Run only affects database transactions. If you export data to a
file, the export file is created, and data is added to the file also if Commit
After Run is set to False.

• Setting Commit After Run to False rolls back all changes cause by DML
statements (changes to data records in existing tables). Creating or deleting

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 129

tables is not included in the roll back. That means, for example, if you test an
ADIF scheme that is configured to write temporary tables to the database
persistently, these temporary tables will be created persistently even if
Commit After Run is set to False. SQL Commands of the type OnActivate
are also excluded from roll back.

• Alfabet User Interface Behaviour: Select one of the following to define the availability of
the ADIF scheme in the Alfabet user interface:

• VisibleExecutable: The ADIF export can be triggered in the ADIF Job
Administration functionality and the success of the ADIF jobs executed with this ADIF
scheme can be controlled via the ADIF Job Administration and My ADIF Jobs
functionalities.

• VisibleNotExecutable: The success of the ADIF jobs executed with this ADIF
scheme can be controlled via the ADIF Job Administration and My ADIF Jobs
functionalities, but the ADIF export cannot be triggered via the Alfabet user interface.

• NotVisible: The ADIF scheme and the information about ADIF jobs executed with this
ADIF scheme are not visible in the ADIF Job Administration and My ADIF Jobs
functionalities. This is the default value for new ADIF export schemes.

For information about administration and execution of the ADIF scheme via the
ADIF Job Administration and My ADIF Jobs functionalities, see Executing and
Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities
in the Alfabet User Interface.

• Applicable for REST API: Set the attribute to True if the ADIF scheme shall be executed via a
RESTful service call to the endpoint adifexport of the Alfabet RESTful API either via a
RESTful service call from an external RESTful client or via an Alfabet event that is triggering
the execution of the ADIF scheme when a user enters or leaves a wizard or workflow step or
when an event for execution of a RESTful service call to a third party application is finished.

Execution of the ADIF scheme via the Alfabet RESTful API requires setup of the
RESTful services. For information about the requirements and the execution of the
service call, see the reference manual Alfabet RESTful API.

For the additional configuration to implement execution of an event, see Configuring
Events.

After creating the export scheme, you can now add export definitions to trigger export to one or
multiple data formats. Proceed with:

• Configuring Export to External Database Tables

• Configuring Export to XML Files

• Configuring Export to Comma-Separated Data Files

• Configuring Export to Microsoft® Excel® Files

Optionally, you can configure the following options:

• Configuring Execution of the Import Scheme Dependent on Current Parameters

• Configuring Logging Parameters

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 130

Configuring Export to External Database Tables

Data can be exported to database tables of external databases.

Data export is triggered by an SQL SELECT statement. The result of the SQL query is a data table that is in-
cluded in the external database as follows:

• Data is written to the database table specified with the attribute Export Table of the export entry
for which the SQL query is defined.

• Data is mapped to the columns in the specified table by mapping the alias names of the SELECT
statement to the rows of the external database table.

• All records from the data set are added to already existent records of the external database table.

If data is added to a database table that already contains data, a simple data export will not be
able to update the existing data but will only add new rows to the database table. If this leads to
unique key violations (because another object with the same key already exists in the database
table), the data export will be aborted.

The ADIF export scheme offers various mechanisms to solve this problem:

• Additional SQL commands can be configured to manipulate the target database prior to or
after data export. You can configure the export process to write the exported data to a
temporary table, update the actual target database table via appropriate SQL commands,
and then drop the temporary table.

• A mechanism can be activated that deletes all records from the target database table prior
to the execution of data export.

For more information about the update of existing data in a target database, see Use Case: Filling
Empty Property Values with Default Values When Importing to Mandatory Object Class Properties
in the section Configuring Logging Parameters.

If a string is imported into a target database exceeds the maximum allowed size for strings in the
target database, the data export will be aborted. Therefore, if string size limitations apply to the
values in the target database, the SQL command defined for data export must be defined to trun-
cate data to the allowed file size. The native SQL functions LEFT(Column,MaximumLength) or
SUBSTRING(Column,1,MaximumLength) can be used to truncate data strings.

Configuring Export to a Target Database

The following configuration within an ADIF export scheme is required for data export from the
Alfabet database to an external database:

• Create an export set for the specification of the connection of the external database.

• Create an entry for the specification of the target database table.

• Define the SQL query for the definition of the content that shall be added to the external
database table in the sub-folder SQL Commands - DataExport of the export entry.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 131

You are not allowed to define more than one SQL command of the type Da-
taExport for export to a target database.

The workflow for the definition of the export entry is described below.

Optionally, you can do the following:

• Define additional SQL commands to define complex export scenarios like, for example, the
update of data in a database table instead of simple addition of rows to the existing
database table. For more information, see Configuring Logging Parameters.

To create an export entry for export to an external database:

1) In the explorer of the ADIF configuration interface, right-click the ADIF export scheme to which
you want to add an export set and select Create DB Export Set. A new database export set is
added to the explorer.

2) Select the new database export set in the explorer, and edit the following in the attribute window:

• Name: Enter a meaningful name for the database export set.

• Comments: Enter a comment that provides information about the functionality implemented
within the database export set.

• Driver Type: Select the type of database server that the external database is located on.
Import can be performed from databases on Microsoft® SQL Servers®, Oracle® Database
servers or Microsoft® Access databases. Select one of the following:

• SqlServer for access to Microsoft SQL Server

• Oracle for access to Oracle

• Access for access to Microsoft Access via an OLE driver

• ODBC for access to Microsoft Access, Oracle® MySQL or PostgreSQL 9.1 via an ODBC
driver

• Hadoop for access to Hadoop systems

• Driver Sub-Type : This attribute is only visible if SqlServer is selected in the Driver Type
attribute. Select the driver that shall be used for the connection to the Microsoft SQL Server:

• MSNetServer: The driver used in previous Alfabet releases. It is restricted to use
with.NET Framework. This is the default value.

• MSSqlServer: A driver supporting both.NET Framework and.NET Core environments.

• Connection String: Enter the connection string required to connect to the external source.
The connection string depends on the database server used. It typically contains source
location, user name, and other parameters, according to the requirements of the database
server.

It is recommended that you define the database login in the connection string via a
user name and password. If Windows Authentication is used for login and the ADIF
Console Application is started with a remote alias, the connection to the database
will only be successful if the Alfabet Server is started with the same domain user
name and access rights that are provided with the connection string.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 132

Server variables can be used in the connection string. Server variables allow you to
define all or part of the definition in the server alias configuration of the Alfabet
Server instead of directly defining it in the ADIF scheme. Use of server variables is
useful, for example, when using the configuration in a test and production environ-
ment with different external sources. The same external source definition can be
used in both environments. The server alias definition used in the test and produc-
tion environment define the correct connection data for the external source used in
the respective environment. The use of server variables is described in the section
Using Server Variables in Web Link and Database Server-Related Specifications in
the chapter Configuring Reports.

ODBC can be used for connections to Microsoft Access or PostgreSQL 9.1 database
servers, but performance will be lower compared to native drivers and stored proce-
dures are not supported.

The following are examples of connection strings for connections to different data-
base servers.

Connection string for connection to a Microsoft SQL Server® with standard login:

Server=myServerAddress;Database=myDataBase;User
Id=myUsername;Password=myPassword;

Connection string for direct connection to an Oracle® database server:

User Id=APP_ID;Password=*********;Direct=true;Data
Source=servername;Port=Port;SID=orcl

Connection string for direct connection to an Oracle® databse server including the
service name:

User
Id=********;Password=*********;Server=ServerFQDN/IP;Unicode
=True;Connection Timeout=60;Max Pool
Size=250;Direct=True;Service Name=ServiceName;Port=1521

Connection string for indirect connection to an Oracle® database server:

User
Id=***;Password=*****;Server=orcl;Unicode=True;Connection
Timeout=60;Max Pool Size=250

• Is Active : Select True to activate the execution of all export entries within the export set.
Select False to deactivate the execution.

3) Right-click the database export set and select Create Entry. A new export entry node is added to
the explorer as sub-node of the database export set.

4) In the explorer, click the new export entry node.

5) In the attribute window on the right, set the following attributes for the export entry:

• Name: Change the default name of the entry to a meaningful name. The Name is used to
identify the export entry in technical processes. It must be unique and should not contain
whitespaces or special characters.

• Comments: Optionally enter a comment that provides information about the export for
internal use.

• IsActive : Select True to activate the execution of the entry during export.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 133

• Export Table: Enter a name for the target database table in the external database. The data
will be written to the specified table.

• Delete Table After Export: Select True to delete the database table specified as target for
the export with the attribute Export Table after execution of the export. The table is deleted
after all SQL commands specified for the export entries in the database export set were
executed. Select False to write data to the target database persistently.

When you want to update existing data in a target database, you can export to a
temporary table, specify additional SQL commands to be executed on the target da-
tabase to merge the data to the actual target database table, and delete the tempo-
rary table after export. The creation of the temporary table must be triggered with
an SQL command, while dropping of the table is done automatically when the De-
lete Table After Export attribute is set to True.

• Empty Table Before Export: Select True to delete all records from the database table
specified as target for the export with the attribute Export Table prior to execution of the
export. The table is deleted after all SQL commands specified for the export entries in the
database export set. Select False to add data to existing data records.

Unique key and primary key settings depend on the configuration of the target da-
tabase and can therefore not be taken into account by the standard export mecha-
nism provided via ADIF. Therefore, the addition of data to exiting records can lead to
problems during data import. Deleting records from a table before data export is ex-
ecuted is part of the mechanisms that help to implement an export configuration
that allows to update existing data to a target database. For more information about
such configuration, see Use Case: Filling Empty Property Values with Default Values
When Importing to Mandatory Object Class Properties in the section Configuring
Logging Parameters.

• Boolean’False’ : If a boolean property exported to an external database shall be represented
by a string in the target database, select the string value that shall be used if an attribute of
the data type Boolean is set to False. The default is True.

When a boolean property is not mandatory in the Alfabet meta-model and therefore
set to NULL for some objects, NULL is not interpreted as False but as an empty
data field. If you want NULL to be treated as False, you must configure your SQL
query accordingly.

• Boolean’True’ : If a boolean property exported to an external database shall be represented
by a string in the target database, select the string value that shall be used if an attribute of
the data type Boolean is set to True. Default is True.

• Number Decimal Digits: If numbers shall be converted to strings during export, define the
number of digits to be defined in the output for the decimal part of numbers. The default is 2.
For example, two and a half will be written as 2.50.

• Number Decimal Separator: If numbers shall be converted to strings during export, define
the decimal separator for numbers. The default is a period.

• Number Group Separator: If numbers shall be converted to strings during export, define the
separator for number groups. The default is a comma. For example, three thousand will be
written as 3,000.

• Date Format: If dates shall be converted to strings during export, define the format for dates
written to the target database table. The default is dd/MM/yyyy.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 134

6) In the explorer, expand the export entry node of the new database export entry.

7) Right-click the folder SQL Commands - Data Export and select Create SQL Command. A new
SQL command node is added to the explorer.

8) Click the new SQL command node and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Command Type : Select DMLstatement in the drop-down list.

• Apply To : Select local.

• Result Type : Select Undefined.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is exported to the target database table specified in the export entry. The column
headers resulting from the SELECT statement must match the name of the column headers in
the target database table. Either write the SQL query directly in the field or click the

Browse button to open an editor for the definition of the SQL query. Define the SQL query
in the SQL Text tab of the editor.

If you want to configure complex export scenarios like, for example, the update of
existing data in the target database, you can add additional SQL commands to the
export entry. For more information about the definition of SQL commands within an
export entry, see Configuring Logging Parameters.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified in the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active: Select True to activate the SQL command. Select False to deactivate the SQL
command.

9) Repeat step 3 - 8 for each database table of the target database you want to export data to.

Configuring Export to XML Files

Data can be exported to XML file formats with the extension.xml.

Data export is triggered by multiple SQL SELECT statement. The SQL statements can be hierarchically
structured to build the hierarchy of XML elements within the target file. This section first describes the
structure that must be provided as a framework for the definition of an XML export file in the ADIF export
scheme in the section. The definition of the XML in the target file via SQL queries and attributes of the ADIF
export scheme is then explained based on a simple example in the section.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 135

Configuring Export to a Target XML File

The following configuration within an ADIF export scheme is required for data export from the
Alfabet database to a single XML file:

• Create an export entry for the specification of the target export file.

• Define the SQL query for the definition of the content of the file in the sub-folder SQL
Commands - DataExport of the export entry.

The workflow for the definition of the export entry is described below.

Optionally, you can do the following:

• Define additional SQL commands to define complex export scenarios. For more
information, see Configuring Logging Parameters.

• Structure the export entries in an export set. Export sets do not have technically relevant
attributes and are only used to enhance the readability of the ADIF export set. The
definition of XML export set is currently only possible via direct definition in the text
editor of the XMLExportSet element in the XML of the ADIF export scheme. For
information about defining ADIF export schemes in text editors, see Configuring ADIF via
XML Editing.

To create an export entry for export to XML files:

1) In the explorer of the ADIF configuration interface, right-click the export scheme and select
Create Entry. A new export entry node is added to the explorer as sub-node of the ADIF export
scheme.

Alternatively, you can select the option Create XML Entry for Classes to create an XML
export entry that already contains a basic configuration of an XML structure with one
XML element per class in parallel below the root node.

If you select Create XML Entry for Classes, a class selector opens that allows you to
select the object classes for which data shall be added to the first level of XML elements
in the XML output. For each class that you select in the class selector, an SQL command
generating XML elements for the data output will be automatically added to the XML en-
try and default values will be set for all attributes. Nevertheless, you should control the
output following the next steps of this workflow.

2) In the explorer, click the new export entry node.

3) In the attribute window on the right, set the following attributes for the export entry:

• Name: Change the default name of the entry to a meaningful name. The Name is used to
identify the export entry in technical processes. It must be unique and should not contain
whitespaces or special characters.

• Comments: Optionally, enter a comment that provides information about the export for
internal use.

• Is Active: Select True to activate the execution of the entry during export.

• Export Table: Enter a name for the target file for the export. The export file will be created
during export. It must have the extension.xml

• XML Root Tag: Enter the name of the root element of the XML output of the export.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 136

• Encoding: Select the encoding for the data in the export file from the drop-down list.

• Boolean’False’ : Select the string value that shall be written to the export file when an
attribute of the data type Boolean is set to False. The default is False.

When a boolean property is not mandatory in the Alfabet meta-model and therefore
set to NULL for some objects, NULL is not interpreted as False but as an empty
data field. If you want NULL to be treated as False, you must configure your SQL
query accordingly.

• Boolean’True’ : Select the string value that shall be written into the export file when an
attribute of the data type Boolean is set to True. Default is True.

• Number Decimal Digits: Define the number of digits to be defined in the output for the
decimal part of numbers. The default is 2. For example, two and a half will be written as 2.5.

• Number Decimal Separator: Define the decimal separator for numbers. The default is a
period.

• Number Group Separator: Define the separator for number groups. The default is a comma.
For example, three thousand will be written as 3,000.

• Date Format: Define the format for dates written to the export file. The default is
dd/MM/yyyy.

4) In the explorer, expand the export entry node of the new export entry.

5) Right-click the folder SQL Commands - Data Export and select Create SQL Command. A new
SQL command node is added to the explorer.

6) Click the new SQL command node and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that gives information about the functionality implemented by
the SQL command.

• Command Type : Select DMLStatement in the drop-down list.

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is exported to the target file specified in the export entry. Either write the SQL query

directly in the attribute field or click the Browse button to open an editor for the definition
of the SQL query. Define the SQL query in the SQL Text tab of the editor.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 137

Definition of the XML Content of the Export File

The content of the XML target file is defined via the attributes of the export entry and SQL commands in
the sub-folder SQL Commands - DataExport of the export entry, and the SELECT statements of the SQL
queries defined in the SQL commands.

For the definition of SQL queries, the following general rules apply:

• The first property defined in the SELECT statement must be the REFSTR property of the selected
object class. This first property is not written into the output file. It is only used for technical
processes. If you want the REFSTR property of the object to be part of the XML output, you must add
the REFSTR to the select statement two times.

• If a column name resulting from the specification in the SELECT statement starts with A_ or E_, the
A_ or E_ are not written to the output file. A specification of A_PROP results in an output of PROP
only. The prefix is used to define how the properties are represented in the XML.

This section lists all XML element types that can be included in the output file and how object classes and
properties are represented in the output file. An example is added for a better understanding.

An XML file shall be created that contains information about the as-is architecture of the com-
pany that is affected by a defined project. Both applications and business processes defined in
the as-is architecture of the project shall be listed.

The ADIF export offers a mechanism to vary the definition of the parent that the information is
exported for during runtime of the export execution. For more information, see Configuring Im-
port Dependent on Parameters. To keep the following example simple, this mechanism is not
used but the data is exported for an example project called "Consolidate Trading Applications".

Root Element

The XML root element of the XML is defined in the attribute section of the export entry in the attribute XML
Root Tag. The XML root element cannot have any attributes.

The root element for the example XML output is specified as "ProjectArchitecture":

The resulting XML output is:

<?xml version="1.0" encoding="utf-8"?>

<ProjectArchitecture>

</ProjectArchitecture>

Class Elements

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 138

Class XML elements are added to the XML output on execution of the SQL commands in the folder SQL
Commands - Data Export of the XML export entry.

For each record found by the SELECT statement defined for the SQL command, an XML element is added to
the XML output. The XML element name is specified with the attribute XML Tag Name of the SQL com-
mand. The properties defined in the SELECT statement of the SQL command are written as XML attributes
in the XML elements. For each property, an XML attribute with the name of the alias specified for the prop-
erty in the SELECT statement is added to the XML element.

When specifying the alias names for the SELECT statement, you must take the following rules into account:

• The alias name must not contain whitespaces or any special characters except - or _.

• If the alias name starts with A_, the resulting attribute name will be the alias string without the A_.

• If the alias name starts with E_, the property will not be included as XML attribute in the class XML
element, but as a property XML element subordinate to the class XML element.

• The first property defined in the SELECT statement is not written to the output file. For technical
reasons, the first property defined in the SELECT statement must specify the REFSTR of an object.

To add information about the applications defined in the as-is architecture of the project to the
XML output, an SQL command is added to the SQL Commands - DataExport folder of the XML
export entry. The name of the XML element is set to Application with the attribute XML Ele-
ment Tag of the SQL command.

The JOIN and WHERE conditions of the SQL query lead to the selection of applications assigned
to the project ’Consolidate Trading Applications’ only. The SELECT statement of the SQL
query of the SQL command defines the XML attributes to be added to the XML element Appli-
cation, with the REFSTR property of the object class Application added as the first property.
The SQL query:

SELECT app.REFSTR, app.NAME "Name", app.VERSION "Version",
app.STARTDATE "StartDate", app.ENDDATE "EndDate",

(SELECT COUNT(*) FROM RELATIONS rel WHERE rel.FROMREF = app.REFSTR
AND rel.PROPERTY =‘ApplicationGroups') AS "GroupAssignment"

FROM APPLICATION app

INNER JOIN PROJECT_ARCH pa ON pa.OBJECT = app.REFSTR

INNER JOIN PROJECT pro ON pro.REFSTR = pa.PROJECT

WHERE pro.NAME =‘Consolidate Trading Applications'

Generates the following XML output:

<?xml version="1.0" encoding="utf-8"?>

<ProjectArchitecture>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 139

<Application Name="Summit" Version="3.1" StartDate="2003.03.28"
EndDate="2016.01.16" GroupAssignment="2"/>

<Application Name="GenLManager" Version="1.5" StartDate="2010.05.29"
EndDate="2016.05.03" GroupAssignment="0"/>

</ProjectArchitecture>

The values of the XML attributes are the string values of the properties for the current record. The conver-
sion follows the defined rules:

• The ADIF export scheme allows rules to be configured for the conversion of property values into
strings. The rules are configurable in the attributes of the XML export entry (this means that the
same rules apply to all XML elements in the export file).

You can define date and number formats and a string to be written to the output file for boolean False and
boolean True values. For an overview of the attribute settings in the XML export entry, see Configuring Ex-
port to a Target XML File.

• Data types of the properties of Alfabet object classes are automatically mapped to the right format
type and processed according to the settings in the export entry attributes.

• You can define that numeric or string values shall be converted to boolean by setting the data type
as a suffix in brackets in the alias specification for the property. To be processed as boolean, the
property alias must be specified as

<alias>[boolean]

and the property must return either of the following values

• The string True or False.

• An integer. If the integer is equal to 0, it is regarded as boolean False, all other integers are
regarded as boolean True.

• The attribute Write Empty Attribute Values of the SQL Command defines whether XML attributes
are written without values into the XML output if a property is not filled. Setting the attribute Write
Empty Attribute Values to True results in an output of:

<Application Name="Summit" Version="3.1"IsVariant="" />

Setting the attribute to False will result in the same XML element to be written as:

<Application Name="Summit" Version="3.1"/>

In the example, the number of application groups that the application is assigned to is written in
the XML attribute GroupAssignment. If the data shall only be used to find out whether an appli-
cation is assigned to at least one application group, the SELECT statement of the Alfabet query
can be changed to convert the integer that is resulting from the sub-SELECT statement to a
boolean value:

SELECT app.REFSTR, app.NAME "Name", app.VERSION "Version",
app.STARTDATE "StartDate", app.ENDDATE "EndDate",

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 140

(SELECT COUNT(*) FROM RELATIONS rel WHERE rel.FROMREF = app.REFSTR
AND rel.PROPERTY =‘ApplicationGroups') AS
"GroupAssignment [boolean] "

FROM APPLICATION app

INNER JOIN PROJECT_ARCH pa ON pa.OBJECT = app.REFSTR

INNER JOIN PROJECT pro ON pro.REFSTR = pa.PROJECT

WHERE pro.NAME =‘Consolidate Trading Applications'

Generates the following XML output with GroupAssignment filled with the string values for
boolean True and False defined in the attributes of the export entry:

<?xml version="1.0" encoding="utf-8"?>

<ProjectArchitecture>

<Application Name="Summit" Version="3.1" StartDate="2003.03.28"
EndDate="2016.01.16"GroupAssignment="yes" />

<Application Name="GenLManager" Version="1.5"
StartDate="2010.05.29"
EndDate="2016.05.03"GroupAssignment="no" />

</ProjectArchitecture>

You can add multiple SQL commands to the SQL Commands - DataExport folder of an XML export entry.
Class XML elements are added to the XML output in the order of the execution of the SQL commands.

SQL commands can be hierarchically structured. You can add sub-commands to the first-level commands.
In the XML output, sub-commands will lead to the addition of child XML elements for an XML element. When
an SQL command is executed, the child SQL command is executed for each record of the superordinate
SQL command to evaluate the child XML elements to be added to the current class XML element.

The SQL queries defined for sub-commands must have a relation to the parent XML element. This relation is
established by parameters that refer to the parent XML element. A parent XML element can be referenced
with the parameter @<element name>. The parameter is substituted with the REFSTR specified with the
first property of the SELECT statement of the parent SQL command.

For the example, the business processes assigned to the applications shall be added as sub-ele-
ments <ApplicationProcess/> to the <Application/> XML element and the business pro-
cesses assigned to the project shall be added as XML elements <BusinessProcess/> on the
top level of the hierarchy.

For the <BusinessProcess/> XML elements on the top level of the hierarchy, a new SQL com-
mand is added to the SQL Commands - Data Export folder.

For the <ApplicationProcess/> XML elements, a sub-command is added to the existing SQL
Command for the creation of the <Application/> elements.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 141

In the SQL query for the <ApplicationProcess/> XML elements, the applications in the upper
level are referenced with the parameter @Application. The parameter returns the REFSTR of
the application the parent XML element is about:

SELECT bp.REFSTR,bp.NAME "Name"

FROM BUSINESSPROCESS bp

INNER JOIN RELATIONS rel ON rel.FROMREF = bp.REFSTR

INNER JOIN APPLICATION app ON app.REFSTR = rel.TOREF

WHERE app.REFSTR =@ApplicationAND rel.PROPERTY =‘Applications'

The resulting output shows the data about business processes defined by the SQL queries in the
additional SQL commands:

<?xml version="1.0" encoding="utf-8"?>

<ProjectArchitecture>

<Application Name="Summit" Version="3.1" StartDate="2003.03.28"
EndDate="2016.01.16" GroupAssignment="yes">

<ApplicationProcess Name="Equity Trading Trading" />

<ApplicationProcess Name="Foreign Exchange Dealings" />

</Application>

<Application Name="GenLManager" Version="1.5"
StartDate="2010.05.29" EndDate="2016.05.03" GroupAssignment="no">

<ApplicationProcess Name="Custody Services" />

</Application>

<BusinessProcess Name="Equity Trading Trading" />

<BusinessProcess Name="Foreign Exchange Dealings" />

<BusinessProcess Name="Custody Services" />

</ProjectArchitecture>

Property Element

The properties defined in the SQL statement of an SQL command for data export for an object class can be
added to the XML content as XML elements instead of being converted to XML attributes. This can be per-
formed in two different ways:

• Defining XML element generation via a prefix in the Alias specification in the SELECT statement. This
method generates property XML elements without XML attributes. The XML element name is
identical to the Alias specification of the SELECT statement of the SQL command.

<Application Name="Summit">

<Version>3.1</Version>

<ObjectState>Active</ObjectState>

<IsVariant>false</IsVariant>

</Application>

• Defining XML element generation via Attribute definitions in the ADIF Export Entry. This method
shall be used to generate property XML elements with XML attributes or to generate property XML
elements with an identical name for multiple object class properties. The name of the property XML

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 142

element generated via an Attribute definition is defined in the Attribute definition. The property
XML element always has an XML attribute Name with the value identical to an Alias definition in the
SQL statement defining the class XML element the property belongs to.

For example the Attribute definition can be used to store information about object
class properties in XML elements <Property /> with an XML attribute Name defining
the name of the object class property this XML element is created for and an XML at-
tribute Type defining the data type of the object class property:

<Application Name="Summit">

<Property Name="Version" Type="String">3.1</Property>

<Property Name="ObjectState"
Type="String">Active</Property>

<Property Name="IsVariant" Type="String">false</Property>

</Application>

The following applies to both types of property XML elements:

• If you want the value of the object class property to be written to the output as CDATA, you must
add a suffix [cdata] to the alias specification for the object class property that is defined to be
written to an XML element.

• The attribute Write Empty Element Values of the SQL command defines whether property XML
elements are written without values to the XML output if an object class property is not filled.
Setting the attribute Write Empty Element Values to True results in an output of:

<Application Name="Summit">

<Version>3.1</Version>

<IsVariant />

</Application>

Setting the attribute to False will result in the same XML element to be written as:

<Application Name="Summit">

<Version>3.1</Version>

</Application>

Defining Property XML Elements via the Alias Specification

If you want properties of an object class that are specified in the SELECT statement of an SQL command to
be written in the file as an XML sub-element rather than XML attributes of the class XML element, you must
define an alias name starting with E_ for the property in the SELECT statement. The value of the property is
then written as data content to a child XML element of the class. The name of the child XML element is
identical with the alias name for the property in the query without the prefix E_.

In the example, the object class property Description of the object class Application shall
be included in the output. As the description can be a long text and may contain special charac-
ters and line breaks, the data shall be added as a property XML element instead of an XML attrib-
ute of the <Application/> XML element and a CDATA element shall be used to wrap the

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 143

content of the description. The Description property is added to the SELECT statement of the
SQL query as follows:

SELECT app.REFSTR,app.NAME "Name",app.VERSION
"Version",app.STARTDATE "StartDate[date]",app.ENDDATE
"EndDate",app.VARIANT "IsVariant",(SELECT COUNT(*) FROM RELATIONS
rel WHERE rel.FROMREF = app.REFSTR AND rel.PROPERTY
=‘ApplicationGroups') AS "GroupAssignment[boolean]",app.DESCRIPTION
"E_Description[cdata]"

FROM APPLICATION app

The resulting output for one of the applications in the output file is:

<Application Name="Summit" Version="3.1" StartDate="2003.03.28"
EndDate="2016.01.16" GroupAssignment="yes">

<Description><![CDATA [Unparalleled Document Processing and Check
Imaging Solution]]></Description>

<ApplicationProcess Name="Equity Trading Trading" />

<ApplicationProcess Name="Foreign Exchange Dealings" />

</Application>

Defining Property Elements via Attribute definitions

If you want properties of an object class that are specified in the SELECT statement of an SQL Command
to be written in the file as a XML sub-element of the class XML element with own XML attributes, you must
do the following:

1) In the SQL Command exporting data for the object class, add all properties that you want to add
as XML elements to the output to the SELECT statement.

2) For each property to be exported as XML element, right-click the folder Attributes of the export
entry and select Create Attribute. In the attribute window of the new Attribute entry, define the
following:

• XML Tag: Enter the name of the XML Element.

• XML Type : Select Element from the drop-down list.

• Export Column : Enter the Alias name in the SELECT statement of the SQL Command for the
object class property that this XML element shall store.

• Caption : Enter the value for the XML attribute Name of the XML element.

• Data Type: Enter the type of data stored in the XML element as value.

3) To add an XML attribute to a new property XML element, right-click the Attribute in the explorer
and select Create Xml Attribute. In the attribute window of the new XML Attribute entry, define
the following:

• Name: Enter the name of the XML attribute.

• Value: Enter the value for the XML attribute.

In the example, information about applications shall be exported, including the English and Ger-
man version of the Name and Description object class properties. All object class properties
shall be stored as XML child elements <Property / > of the <Aplication /> element. In

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 144

addition, the information about the language culture of the exported property shall be added to
the export.

The SQL Command for export of the application data includes both language versions of the
Name and the Description property of the applications:

SELECT app.REFSTR,app.NAME +’’ + app.VERSION As
"NAME_EN",app.NAME_1031 +’’ + app.VERSION As "NAME_DE",
app.DESCRIPTION, app.DESCRIPTION_1031

FROM APPLICATION app

For each object class property an Attribute entry is created:

For example the Attribute entry for the English version of the Name property is defined as:

is defined as:

The Attribute entry for the German version of the Name property has the same Caption defined
as for the English version. The difference between the two Attribute entries is limited to map-
ping to a different part of the SELECT statement with the Export Column definition and a differ-
ent value definition for the XML attribute language.

Accordingly, the XML output of the export includes two <Property/> XML elements with the
XML attribute Name set to the value Name and two <Property/> XML elements with the XML
attribute Name set to the value Description. The two <Property/> XML elements with iden-
tical Name differ in the value of the XML attribute language. The content of the <Property/>
XML element includes the respective translation of the applications’ name and description:

<Application>

<Property Name="Name" language="en-US">Customer Opinion DB
6.1.4</Property>

<Property Name="Name" language="de-DE">Kundenmeinungs-DB
6.1.4</Property>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 145

<Property Name="Description" language="en-US">Database for
storing results of customer surveys</Property>

<Property Name="Description" language="de-DE">Datenbank zum
Speichern der Ergebnisse von Kundenabfragen</Property>

</Application>

Sequence Element

Sequence elements are simple XML elements without XML attributes that serve as containers for all XML
elements created on execution of an SQL Command. A sequence XML element is defined in the attribute
section of the SQL Command with the attribute Sequence XML Tag Name.

On the top level of the example, both <Application/> and <BusinessProcess/> XML ele-
ments are added. To further structure the content, the <Application/> XML elements are
written to a sequence XML element <ProjectApplications/>:

The <BusinessProcess/> XML elements are written to a sequence XML element <Pro-
jectProcesses/>. The resulting XML now looks like this:

<?xml version="1.0" encoding="utf-8"?>

<ProjectArchitecture>

<ProjectApplications>

<Application Name="Summit" Version="3.1"
StartDate="2003.03.28" EndDate="2016.01.16"
GroupAssignment="yes">

<Description>Unparalleled Document Processing and Check
Imaging Solution</Description>

<ApplicationProcess Name="Equity Trading Trading" />

<ApplicationProcess Name="Foreign Exchange Dealings" />

</Application>

<Application Name="GenLManager" Version="1.5"
StartDate="2010.05.29" EndDate="2016.05.03"
GroupAssignment="no">

<ApplicationProcess Name="Custody Services" />

</Application>

</ProjectApplications>

<ProjectProcesses>

<BusinessProcess Name="Equity Trading Trading" />

<BusinessProcess Name="Foreign Exchange Dealings" />

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 146

<BusinessProcess Name="Custody Services" />

</ProjectProcesses>

</ProjectArchitecture>

Configuring Export to Comma-Separated Data Files

Data can be exported to comma-separated formats to files with the extension.txt or.csv.

Data export is triggered by an SQL SELECT statement. The result of the SQL query is a data table that is
written to the file as follows:

• For each row in the table there is a line in the file. The first line contains the table headers, and the
subsequent lines contain the data records found via the SQL query.

• The separator for data columns within a data record is configurable in the ADIF export scheme.

• The data column headers in the first row are identical to the column names resulting from the
SELECT statement of the query.

Data that contains embedded line breaks cannot be exported correctly to CSV files. A line break is
interpreted as the start of a new record. If you would like to export data containing line breaks,
select a different output format (for example, export to an XML file). Line breaks can be embed-
ded in properties of the type Text. Usually, descriptions provided for objects are of the data type
Text.

For example, the following SQL query:

SELECT app.REFSTR, app.NAME, app.VERSION, app.VARIANT

FROM APPLICATION app

WHERE app.NAME LIKE’A%';

Results in the following data set in a tabular format (left) and in CSV format (right):

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 147

Configuring Export to a Target CSV or TXT File

The following configuration within an ADIF export scheme is required for data export from the
Alfabet database to a comma-separated format file:

• Create an export entry for the specification of the target export file.

• Define the SQL query for the definition of the content of the file in the sub-folder SQL
Commands - DataExport of the export entry.

You are not allowed to define more than one SQL command of the type Da-
taExport for export to a CSV or TXT file.

The workflow for the definition of the export entry is described below.

Optionally, you can do the following:

• Define additional SQL commands to define complex export scenarios. For more
information, see Configuring Logging Parameters.

• Structure the export entries in an export set. For more information, see Automatic
Creation of Multiple CSV Export Entries in an Export Set.

To create an export entry for export to CSV or TXT files:

1) In the explorer of the ADIF configuration interface, right-click the export scheme and select
Create Entry. A new export entry node is added to the explorer as sub-node of the ADIF export
scheme.

2) In the explorer, click the new export entry node.

3) In the attribute window on the right, set the following attributes for the export entry:

• Name: Change the default name of the entry to a meaningful name. The Name is used to
identify the export entry in technical processes. It must be unique and should not contain
whitespaces or special characters.

• Comments: Optionally, enter a comment that provides information about the export for
internal use.

• IsActive : Select True to activate the execution of the entry during export.

• Export Table: Enter a name for the target file for the export. The export file will be created
during export. It must have the extension.txt or.csv

• Export Type : Select CSV.

• Delimiter: Select the delimiter that shall be used in the export file between the data entries
within a data set. Each data set is written to a separate row.

If the value for a data field contains the delimiter, the value will be written in quota-
tion marks.

• Encoding: Select the encoding for the data in the export file from the drop-down list.

• Boolean’False’ : Select the string value that shall be written to the export file when an
attribute of the data type Boolean is set to False. The default is False.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 148

When a boolean property is not mandatory in the Alfabet meta-model and therefore
set to NULL for some objects, NULL is not interpreted as False but as an empty
data field. If you want NULL to be treated as False, you must configure your SQL
query accordingly.

• Boolean’True’ : Select the string value that shall be written into the export file when an
attribute of the data type Boolean is set to True. Default is True.

• Number Decimal Digits: Define the number of digits to be defined in the output for the
decimal part of numbers. The default is 2. For example, two and a half will be written as 2.5.

• Number Decimal Separator: Define the decimal separator for numbers. The default is a
period.

• Number Group Separator: Define the separator for number groups. The default is a comma.
For example, three thousand will be written as 3,000.

• Date Format: Define the format for dates written to the export file. The default is
dd/MM/yyyy.

4) In the explorer, expand the export entry node of the new export entry.

5) Right-click the folder SQL Commands - Data Export and select Create SQL Command. A new
SQL command node is added to the explorer.

6) Click the new SQL command node and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that gives information about the functionality implemented by
the SQL command.

• Command Type : Select DMLStatement in the drop-down list

• Result Type : Select Undefined.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified in the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is exported to the target file specified in the export entry. Either write the SQL query

directly into the attribute field or click the Browse button to open an editor for the
definition of the SQL query. Define the SQL query in the SQL Text tab of the editor.

Automatic Creation of Multiple CSV Export Entries in an Export Set

Export entries can be located directly under the ADIF export scheme element or as sub-elements of an ex-
port set. Defining export entries within an export set is useful to structure the ADIF export scheme. Addi-
tionally, the definition of an export set can be used to create multiple export entries in a batch process
when defining the ADIF scheme in the ADIF configuration interface.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 149

If you want to export data about multiple Alfabet object classes to a comma-separated format, you can se-
lect the object classes during creation of an export set via the ADIF configuration interface. One export en-
try per selected class is added automatically to the export set with a preconfigured SQL query for data ex-
port that selects all properties of all objects of the selected object class for export.

To create multiple export entries within an export set:

1) In the explorer of the ADIF configuration interface, right-click the ADIF export scheme to that you
want to add an export set and select Create Export Set for Classes (CSV, Excel). A class selector
opens.

2) In the class selector, select the checkbox of the classes that you want to include in the export.

3) Click OK to save your changes. An export set with one export entry for each selected class is
added to the explorer. For each export entry, an SQL command is predefined in the folder SQL
Commands - DataExport with an SQL query that finds all objects of the selected class and
exports all properties of the selected class.

4) Select the new export set in the explorer, and edit the following in the attribute window:

• Name: Enter a meaningful name for the export set.

• Comments: Enter a comment that provides information about the functionality implemented
in the export set.

• Is Active : Select True to activate the execution of all export entries within the export set.
Select False to deactivate the execution.

5) For each export entry, select the export entry in the explorer and change at least the following
attributes:

• Export Type : Select CSV in the drop-down list.

• Export Table : Change the file extension to either csv or txt. Optionally, you can change the
file name.

Optionally, you can specify all other attributes. A description of the attributes of an export entry is
provided in the section Configuring Export to a Target CSV or TXT File.

6) For each export entry, navigate to the SQL command located in the SQL Commands - DataExport
folder and modify the preconfigured command according to your requirements. For more
information about the configuration of the SQL command, see Configuring Export to a Target CSV
or TXT File.

If you want to configure complex export scenarios, you can add additional SQL com-
mands to the export entry. For more information about the definition of SQL commands
within an export entry, see Configuring Logging Parameters.

7) Optionally, reorder the sequence of export entries in the export set. Click the Browse button in
the Entries attribute to open a list of all export entries in the export set. Click one of the child

nodes in the list and click the Up/Down buttons in the upper-right corner to move the selected
element in the list. Once the export entries are correctly sorted, click OK to apply your changes to
the ADIF export scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 150

Configuring Export to Microsoft® Excel® Files

Data can be exported to Microsoft® Excel® XLS and XLSX file formats.

Data export is triggered by an SQL SELECT statement. The result of the SQL query is a data table that is
written to the file as follows:

• Only one data set can be exported per Microsoft® Excel® file. Data is written to the first tab of the
Excel file and the tab is named "Export".

• The data columns defined with the SQL SELECT statement define the number and content of
columns in the Microsoft® Excel sheet. Optionally, ADIF can be configured to write data into the file
starting from a defined position in the number of columns.

• Each row in the table equals a line in the file. The first line contains the table headers and the
subsequent lines contain the data records found via the SQL query. Optionally, ADIF can be
configured to add a defined text as header into the first row of the Microsoft Excel sheet and start
writing the result table with the second row. The header has a green background colour and a red
text:

• The data column headers in the first row are identical to the column names resulting from the
SELECT statement of the query.

• Excel interprets and displays number formats, date formats, and boolean values according to the
standard settings of your Microsoft® Excel® application.

• The maximum number of rows in an Excel table is restricted to 64000 for some versions of
Microsoft® Excel®. Additionally, you can further restrict the number of rows in the ADIF export
scheme. If the number of rows in the exported data set exceeds the number of rows allowed in a
table, a new file will be created containing the remaining data. Files are numbered consecutively as
<FileName>.xls, <FileName>1.xls, and so on.

• Drop-down lists with pre-defined values can be created for cells in the Excel table during export.
This mechanism is relevant if data shall be processed by a user in the Excel table and re-imported
into the Alfabet database after processing.

For example, the following SQL query:

SELECT app.REFSTR, app.NAME, app.VERSION, app.VARIANT

FROM APPLICATION app

WHERE app.NAME LIKE’A%';

Results in the following data set in a tabular format (left) and in Microsoft® Excel® format
(right):

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 151

Configuring Export to a Target Microsoft® Excel® File

The following configuration within an ADIF export scheme is required for data export from the
Alfabet database to a Microsoft® Excel® file:

• Create an export entry for the specification of the target export file.

• Define the SQL query for the definition of the content of the file in the sub-folder SQL
Commands - DataExport of the export entry.

You are not allowed to define more than one SQL command of the type Da-
taExport for export to a target Microsoft® Excel® file.

The workflow for the definition of the export entry is described below.

Optionally, you can do the following:

• Define additional SQL commands to define complex export scenarios. For more
information, see Configuring Logging Parameters.

• Structure the export entries in an export set. For more information, see Automatic
Creation of Multiple CSV Export Entries in an Export Set.

To create an export entry for export to Microsoft Excel files:

1) In the explorer of the ADIF configuration interface, right-click the export scheme and select
Create Entry. A new export entry node is added to the explorer as a sub-node of the ADIF export
scheme.

2) In the explorer, click the new export entry node.

3) In the attribute window on the right, set the following for the export entry:

• Name: Change the default name of the entry to a meaningful name. The Name is used to
identify the export entry in technical processes. It must be unique and should not contain
whitespaces or special characters.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 152

• Comments: Optionally, enter a comment that provides information about the export for
internal use.

• IsActive : Select True to activate the execution of the entry during export.

• Export Table: Enter a name for the target file for the export. The export file will be created
during export. It must have the extension.xls or.xlsx. The file extension must be identical to
the extension selected with the attribute Export Type.

• Export Type : Select XLS to export to a Microsoft® Excel® 2003 format or XLSX to export to a
Microsoft® Excel® 2010 format.

• Excel Max Records: Define the maximum number of records that may be added to the target
file. If the number of records in the data set exceeds the maximum number of records, the
remaining data will be written to a new file named <FileName><running number>.<extension>.
You can define any number of records higher than 100 or -1 to write data to the target file
without limitations in the number of records.

Make sure that the configured number corresponds to the technical limits of the Mi-
crosoft® Excel® version used. Some Excel® applications cannot read tables with
more than 64000 records.

• Header Text: If you want a general header to be displayed above the data set in the Microsoft

Excel sheet, enter the header text. You can click the button in the attribute field to open a
text editor. If you include a line break, the line break is also available in the header text in the
Microsoft Excel file.

• Export Start Column: Enter the number of the first column of the exported data set in the
Microsoft Excel sheet. The first column in the sheet has the number 0.

For example to generate a Microsoft Excel sheet with three empty columns before
the exported data, set the Export Start Column attribute to 3:

4) In the explorer, expand the export entry node of the new export entry.

5) Right-click the folder SQL Commands - Data Export and select Create SQL Command. A new
SQL command node is added to the explorer.

6) Click the new SQL command node and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Command Type : Select DMLStatement in the drop-down list

• Result Type : Select Undefined.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 153

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified in the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is exported to the target file specified in the export entry. Either write the SQL query

directly in the attribute field or click the Browse button to open an editor for the definition
of the SQL query. Define the SQL query in the SQL Text tab of the editor.

Creating Drop-Down lists in the Exported Excel File

Fields in the resulting export file can be written as a drop-down list field during export with a set of defined
values. If the data is exported to be updated within the file and re-imported via an ADIF import scheme into
the Alfabet database, this mechanism ensures that the person editing the data does not enter invalid val-
ues.

For example:

• A property is based on an enumeration. The values defined for the enumeration can be
selected from the drop-down list. No invalid values can be produced by typos or by a user
adding values not included in the enumeration.

• A property stores a link to another object in the Alfabet database. The name of the
objects that may be target of the link are defined in a drop-down list. For example for
assigning components to a component category, the component catagories defined in
the Alfabet database are displayed in the list. The person editing the data can specify
relations without opening the Alfabet user interface to find out which component
categories are available.

To define a drop-down list in the output Microsoft Excel file of the export:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 154

1) Right-click the folder Attributes of the export entry and select Create Attribute. In the attribute
window of the new Attribute entry, define the following:

• Export Column : Enter the Alias defined in the SELECT statement of the SQL Command for
data export for the column in the exported dataset the drop-down list shall be applied to.

• Range Query: Enter a native SQL query that returns the data to be displayed in the drop-
down list. For each data set found by the query a row will be added to the drop-down list. All
data defined in the SELECT statement of the Range Query is displayed in the row of the drop-
down list. If the SELECT statement has multiple arguments, the values are written into the
row with a whitespace as separator.

If the drop-down list shall display values derived for example from an enumeration,
the Range Query can be defined to return text strings:

SELECT ’Active' UNION ALL SELECT ’Retired' UNION ALL SELECT
’Plan'

If the drop-down list shall return a list of available objects in the Alfabet database,
the Range Query can read the data directly from the database. Please note that the
drop-down list must enable the person processing the exported data to identify the
object unambiguously. For example, a drop-down list that allows to select applica-
tions must include application name and version, because uniqueness is only imple-
mented for the combination of both:

SELECT NAME, VERSION

FROM APPLICATION

ORDER BY NAME

• Comments: Optionally, enter a comment that provides information about the definition for
internal use.

Automatic Creation of Multiple Excel Export Entries in an Export Set

Export entries may be located directly below the ADIF export scheme element or as sub-elements of an ex-
port set. Defining export entries within an export set is useful to structure the ADIF export scheme. Addi-
tionally, the definition of an export set can be used to create multiple export entries in a batch process
when defining the ADIF scheme in the ADIF configuration interface.

If you want to export data about multiple Alfabet object classes to a Microsoft® Excel® file, you can select
these object classes during creation of an export set via the ADIF configuration interface. One export entry
per selected class is added automatically to the export set with a preconfigured SQL query for data export
that selects all properties of all objects of the selected object class for export.

To create multiple export entries within an export set:

1) In the explorer of the ADIF configuration interface, right-click the ADIF export scheme for which
you want to add an export set and select Create Export Set for Classes (CSV, Excel). A class
selector opens.

2) In the class selector, select the checkbox of the object classes that you want to include in the
export.

3) Click OK to save your changes. An export set with one export entry for each selected object class
is added to the explorer. For each export entry, an SQL command is predefined in the folder SQL

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 155

Commands - DataExport with an SQL query that finds all objects of the selected object class and
exports all object class properties of the selected object class.

4) Select the new export set in the explorer, and edit the following in the attribute window:

• Name: Enter a meaningful name for the export set.

• Comments: Enter a comment that provides information about the functionality implemented
in the export set.

• Is Active : Select True to activate the execution of all export entries within the export set.
Select False to deactivate the execution.

5) Optionally, you can modify the attributes of the export entries according to your requirements. A
description of the attributes of an export entry is provided in the section Configuring Export to a
Target CSV or TXT File.

6) For each export entry, navigate to the SQL command located in the SQL Commands - DataExport
folder and alter the preconfigured command according to your requirements. For more information
about the configuration of the SQL command, see Configuring Export to a Target CSV or TXT File.

If you want to configure complex export scenarios, you can add additional SQL com-
mands to the export entry. For more information about the definition of SQL commands
in an export entry, see Configuring Logging Parameters.

7) Optionally, reorder the sequence of export entries in the export set. Click the Browse button in
the Entries attribute to open a list of all export entries in the export set. Click one of the child

nodes in the list and click the Up/Down buttons in the upper-right corner to move the selected
element in the list. Once the export entries are correctly sorted, click OK to apply your changes to
the ADIF export scheme.

Configuring SQL Commands for Optional Export Enhancements

The basic export configuration described in the section Basic Configuration of Data Export can be en-
hanced by defining additional SQL commands. When creating ADIF export schemes via the ADIF configura-
tion explorer, folders for SQL commands are automatically added to the explorer when SQL commands can
be defined for the element. The folders also define the type of SQL command.

In the XML of the ADIF export scheme each SQL command element has an attribute Type. A sep-
arate folder named SQL Commands - <Type> is added to the explorer for each permissible type.
When SQL Commands are defined in a folder, the Type attribute is automatically set in the XML
definition. When specifying SQL Commands in an XML editor, the Type attribute must be defined
manually.

The following SQL Command types are available:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 156

Type Location in
ADIF
Scheme

Description

OnAc-
ti-
vate

Export Sets
and Export
Entries

SQL commands of the type OnActivate define conditions for the execution of
the element they are defined for. For more information, see Configuring the
Conditional Execution of Parts of the Import Scheme.

Note : Changes triggered by OnActivate commands are not rolled back if the
option Commit After Run is set to False for the import scheme.

Da-
taEx-
port

Export En-
tries

SQL commands of the type DataExport define the data that shall be written to
the target export file or export database table. Each export entry must include
one SQL command of the type DataExport. The permissible number of SQL
commands for data export depends on the target data format. For more infor-
mation, see Basic Configuration of Data Export.

On-
Start

Export En-
tries

SQL commands of the type OnStart are executed prior to the SQL command of
the type DataExport and SQL commands of the type OnComplete are exe-
cuted after the SQL command of the type DataExport. The commands allow to
execute special operations on the Alfabet database prior to or after export. The
SQL commands can be defined for the following purposes:

• Definition of customized debug information written to the log file during
execution of exports. This configuration is described in the section
Configuring Log Message Content.

• Manipulation of the Alfabet database prior and/or after data export. The
definition of SQL command for this purpose is described in this section.

On-
Com-
plete

Export En-
tries

One of the main features of the ADIF interface is the flexibility in configuration. The ADIF export scheme
can not only be configured to simply read existing data from a Alfabet database table to an export file or an
external database table, but you can configure ADIF to perform additional operations on the Alfabet data-
base or, in case of export to an external database, on the external database table prior to or after the actual
data export. SQL queries of the Command Type DDLStatement or DMLStatement can be defined in any
number and order required.

If SQL queries are not sufficient to implement the desired export, custom DLLs can be ordered
from Software AG to provide functionality. The custom code is added to the ADIF export scheme
via an SQL command with the Command Type StoredProcedure. The correct specification of
configuration elements and attributes depends on the custom code. A description is delivered
with the code on an individual basis.

Based on the order of execution of SQL statements described below, stored procedures are exe-
cuted in the same way as DML statements.

When configuring SQL commands for an ADIF export scheme, the order of execution must be taken into
account. The elements of an ADIF scheme are executed in the following order:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 157

• The SQL commands OnActivate are evaluated first and the respective elements of the ADIF
schemes are included or excluded from the execution schedule.

• All SQL commands of the type OnStart and the Command Type DDLStatement that target the
Alfabet database are executed in the order they are specified in the ADIF export scheme.

• All export entries and export data sets specified in the ADIF scheme are then processed in the order
specified in the ADIF export scheme.

• Export data sets for export to external databases are processed as follows:

• The connection to the external database is established.

• All DDL statements of SQL commands of the type OnStart targeting the external
database configured for the export entries in the database export set are executed in
the order they are defined in the export set.

• The export entries are processed in the order they are configured in the database
export set as follows:

• All DML statements of SQL commands of the type OnStart are executed in the
order they are specified in the export entry.

• The SQL command of the type DataExport is executed.

• All DML statements of SQL commands of the type OnComplete are executed in
the order they are specified in the export entry. These SQL commands can
target either the Alfabet or the target database.

• All DDL statements of SQL commands of the type OnComplete targeting the external
database configured for the export entries in the database export set are executed in
the order they are defined in the export set.

• All other export entries are processed as follows independent of the location inside or outside
an export set:

• All DML statements of SQL commands of the type OnStart are executed in the order
they are specified in the export entry.

• The SQL commands of the type DataExport are executed.

• The SQL commands of the type OnComplete are executed in the order they are
specified in the export entry.

• All DDL statements of SQL commands of the type OnComplete targeting the Alfabet database
configured for the export entries in the ADIF export scheme are executed in the order they are
defined in the ADIF export scheme.

This section describes in general how to define an SQL command within an SQL Commands - OnStart or
SQL Commands - OnComplete folder of the ADIF configuration explorer, and describes two use cases that
may be covered by the definition of SQL commands:

• Use Case: Update Existing Data Records in a Target Database

• Use Case: Defining Export-Related Custom Properties

• Use Case: Data Restructuring Prior to Export Using Temporary Tables

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 158

Creating SQL Commands

To specify an SQL command to be executed on the Alfabet database or an external target database prior to
or after data export:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands -
OnStart or SQL Commands - OnComplete that is automatically added to the explorer upon the
creation of an Export Entry node.

2) In the context menu, select Create SQL Command. A new SQL Command element is added as
child node of the folder.

3) Click the new SQL command node and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that gives information about the functionality implemented by
the SQL command.

• Command Type: Select the type of SQL query that you want to define from the drop-down
list. Select:

• DMLStatement for SQL data manipulation statements like, for example, SELECT,
INSERT, UPDATE, DELETE, MERGE.

• DDLStatement for SQL data definition statements like, for example, CREATE, ALTER,
DROP, TRUNCATE, RENAME.

DDL statements are only allowed to create, alter and drop new database tables.
It is not permissible to apply those commands to standard Alfabet database ta-
bles.

• Result Type : Select Undefined.

• ApplyTo: If the SQL command is defined for export to an external database table, define the
database that the SQL command is executed on:

• local for execution on the Alfabet database

• external for execution on the external database

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
export to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

• Text: Define the SQL query for the command. Either write the SQL query directly in the

attribute field or click the Browse button to open an editor for the definition of the SQL
query. Define the SQL query in the SQL Text tab of the editor.

Use Case: Update Existing Data Records in a Target Database

If you want to export data to an external database table that already contains records, you must implement
mechanisms in the ADIF export scheme that ensure data integrity in the target database table. Primary key

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 159

constraints and unique key configurations of the target database completely depend on the individual con-
figuration of the target database and can therefore not be taken into account by the ADIF data export
mechanism.

During execution of the SQL command for data export, data is simply written to the external database table
in new records. If this leads to key violations, export is stopped and an error message is written to the log
file of the ADIF console application. Even if the data can be added to the table with new keys for each ob-
ject, data that is meant to update existing object data leads to the creation of a new record instead of up-
dating the existing one.

The ADIF export entry for export to external databases allows you to define any number of DDL and DML
statements to be executed on the target database either prior to or after data export is performed.

To implement data update in existing database tables, you can, for example, create a new database table in
the target database prior to data export and export the data to the new table. After data export, SQL com-
mands can be executed that update the actual target tables in the external database, taking into account
the required key constraints and other update requirements.

The new database table can then be deleted after the target tables were changed. Two mechanisms are
available to delete the temporary table:

• To delete the table as a last step of the execution of the export entry and prior to the execution of
the next export entry, define a DDL statement that drops the table in the SQL Commands -
OnComplete folder of the export entry.

• To delete the table after all SQL commands in all export entries of the data set were executed, set
the attribute Delete Table After Export to True for the export entry. This configuration allows you
to use data from the table in SQL commands configured in other export entries executed after the
current export entry during data export to the external database.

For regular exports, it might be more convenient to create a table for data export in the target
database either during the first import or by mechanisms outside of ADIF and keep the table per-
sistently. You can then set the attribute Empty Table Before Export in the export entry to de-
lete the data from the database table prior to each new import of data in the external database.

If you export data primarily to a temporary table, you can only use one export entry to update multiple da-
tabase tables of the external database. The number of tables changed by SQL commands in the folder SQL
Commands - OnComplete is unlimited.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 160

 FIGURE: Overview of the configuration steps performed to update data in an external database

Use Case: Defining Export-Related Custom Properties

It may be useful to store the information about the performance of the export directly in the database table
of the exported objects for the following reasons, for example:

• Configure export to include only objects that are not already marked as exported in a prior data
export.

• Inform the user via the Alfabet interface whether and/or when data has been last exported.

• Use the attribute as a condition for the execution of actions via the Alfabet interface (for example, in
workflow preconditions or in reports to generate a report that only shows data that was already
exported).

The following configuration steps are required to store information about the export perfor-
mance directly in the database table of the exported objects:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 161

• A custom property must be added to the object class for which data is exported. The
customization of object classes via customer-defined properties is part of the
configuration capabilities offered by Alfabet Expand independent from the ADIF user
interface. For information about how to create a custom property, see Configuring
Custom Properties for Protected or Public Object Classes in the reference manual
Configuring Alfabet with Alfabet Expand.

• In the export entry triggering the export, you can then add an SQL command with an
UPDATE statement in the folder SQL Commands - OnStart or SQL Commands -
OnComplete that finds the exported objects and writes the information about the export
to the custom attribute. The custom attribute may contain the date that the export was
performed or a boolean value that distinguishes between exported and not exported data.

Always use the configuration functionalities of Alfabet Expand to add new property columns to a
database table of a Alfabet object class. It is not permissible to add a property column via a DDL
statement in the SQL commands of the ADIF scheme. Existing standard Alfabet database tables
must not be altered by SQL commands via ADIF.

Use Case: Data Restructuring Prior to Export Using Temporary Tables

In most exports (except the export to XML), the content of the export must be defined with a single SQL
query with a SELECT statement. SQL provides a high flexibility in data collection in a single SELECT state-
ment. Furthermore, ADIF offers additional functionality for the use cases where data must be manipulated
or restructured prior to export in a way that can not be covered by defining SQL queries.

New database tables can be added to the Alfabet database prior to export to restructure the existing data
or add new data derived from query results. The SQL queries in the SQL Commands - DataExport folder
can then be defined to export data from the new database tables exclusively or in parallel with data from
the usual Alfabet database tables.

New database tables should only be added temporarily to the Alfabet database. If you add a table
via an SQL command to be executed on the start of the export entry, make sure that you add an
SQL command to be executed on completion of the export that drops the new database table.

If the output of the export is an XML file, the data from the temporary table can only be included
in the output if the first column of the export definition SELECT statement has the alias name
"REFSTR". This first property in the SELECT statement will be ignored.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 162

 FIGURE: Creation of temporary database tables during export via SQL commands for an export entry

Configuring Execution Dependent on Current Parameters

ADIF export schemes can be configured to adapt to current states of objects in the Alfabet database. You
can define conditions for the overall execution of parts of the export scheme or define conditions for the
choice of object data for execution that can be set in the command line of the ADIF console application
during export and can therefore vary per export.

Configuring Conditional Execution for Parts of the Export Scheme

The ADIF export scheme allows you to couple the execution of parts of the export definition to conditions.
You can define SQL commands that check the Alfabet database for the availability of data and configure
export sets or export entries to be executed only if a configured SQL query executed on the Alfabet data-
base delivers either a positive or negative result.

For example: Data shall be exported about all applications for which a specific indicator shows
critical values. The export can be configured to be executed only if a critical value of the indica-
tor is reached for at least one application.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 163

Conditions can be defined for the following elements of the ADIF export scheme:

• DB Export Set

• Excel Export Set

• XML Export Set

• Export Entry

If a condition is specified for an element, this element and all child elements of the current element are only
executed if the condition is met.

To specify a condition for the execution of a part of an ADIF export scheme:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands -
OnActivate that is automatically added to the explorer on creation of an element.

2) In the context menu, select Create SQL Command. A new SQL command element is added as a
child node of the SQL Commands - OnActivate folder.

3) Click the new SQL command node and specify the following in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that provides information about the functionality implemented
by the SQL command.

• Apply to: Select local. SQL commands of the type OnActivate can only be executed on the
Alfabet database.

• Result Type: Select one of the following in the drop-down list:

• PositiveCheck: If the data set that results from the execution of the query defined
with the attribute Text is empty, the current element of the ADIF scheme will not be
executed and the message defined with the attribute Message will be written to the
log file.

• NegativeCheck: If the data set that results from the execution of the query defined
with the attribute Text is not empty, the current element of the ADIF scheme will not
be executed and the message defined with the attribute Message will be written to the
log file.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is checked according to the settings of the attribute Result Type to specify whether
the ADIF element is executed. Either write the SQL query directly in the attribute field or click

the Browse button to open an editor for the definition of the SQL query. Define the SQL
query in the SQL Text tab of the editor.

• Message: Enter a text that shall be written to the log file in case the ADIF element is not
executed.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
import to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the check. Select False to deactivate the check.

The condition for the check can be defined dependent on parameters set during runtime of the ADIF im-
port. For more information, see Configuring Import Dependent on Parameters.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 164

Configuring Export Dependent on Parameters

Export can be configured to be based on parameters defined in the command line of the ADIF console ap-
plication or in the JSON body of the RESTful service call when starting an export. This allows you to reuse
an ADIF export scheme for various similar exports that only vary in small aspects.

It is not possible to define parameters for ADIF exports executed via the user interface. Never-
theless, these exports can be executed with the default values for the parameters if these de-
fault values are defined in the ADIF export scheme. If an ADIF scheme configuration includes
mandatory parameters, the execution option in the ADIF Jobs Administration (ADMIN_Adi-
fJobs) functionality.

For example, an export that is configured to update an external database with information
changed in the Alfabet database can be performed with the latest change data of objects as a
parameter. You can then configure the ADIF interface to export data only if the object has been
changed after a specific date that is defined by a parameter. For each export, the parameter is
set in the command line to the date when the last export was performed.

The following information is available:

• Configuring an ADIF Export Scheme to Use Parameters in Export Definitions

• Defining Parameter Values On Execution of ADIF Schemes

• Defining Parameter Values During Testing of the ADIF Scheme

Configuring an ADIF Export Scheme to Use Parameters in Export Definitions

Parameters have to be defined in the ADIF scheme. Only parameters that are defined in the ADIF scheme
can be assigned a value during execution of the ADIF scheme.

To define the parameters for an ADIF scheme:

1) In the explorer, click on the ADIF export scheme that you would like to start with parameters.

2) In the attribute window, define the parameter relevant attributes:

• Parameters Backward Compatibility Mode : Make sure that the parameter is set to False.
This is the default value for new ADIF schemes.

ADIF schemes defined prior to Alfabet 10.4 will have the compatibility mode set to
True. If you reset the compatibility mode for these schemes, parameter definitions
must be added to the ADIF export entries in the scheme and the way parameters are
defined in the SQL commands must be revised.

Please note that ADIF schemes with a Parameters Backward Compatibility Mode
set to True which contain parameter definitions cannot be scheduled for execution
via the Job Schedule functionality.

• Arguments Table Name : At the start of an ADIF export, the parameter values are written to
a temporary database table. The name of the temporary database table is configurable in the
ADIF export scheme. By default, it is named ADIF_ARGS.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 165

For each parameter, a row is displayed in the database table with two columns:

• ARG_NAME for the storage of the parameter name.

• ARG_VALUE for the storage of the parameter value.

3) For each parameter that you would like to use in one of the export entries in the scheme, right-
click the Parameters child node of the ADIF export scheme and select Create Parameter from
the dropdown list.

4) Click the newly added @Parameter node and define the following attributes in the attribute

window:

• Name: Define a unique name for the parameter. The parameter name must start with @ and
must not include other special characters or whitespaces. It can be used in the SQL
commands and attributes of the ADIF export scheme and is substituted with the current
value of the parameter during execution of the ADIF export scheme.

• Parameter Type: Select the data type of the parameter value from the dropdown list.

The parameter types StringArray and ReferenceArray can be used if a query shall
define that a string or the REFSTR of a referenced object shall be within an allowed
range of string or REFSTR values.

• Default Value: Optionally, define a default value that shall be used if no parameter value is

provided during execution of the ADIF scheme. Click the Browse button on the right of the
attribute's field to open the editor for definition of the default value. Note the following about
the specification of values:

• For the definition of dates enter the date into the Value field in the format defined in
the culture setting of the language you are currently using to render the Alfabet
Expand user interface or click the Select button and select a date from the calendar.

• If the parameter is placeholder for a string and used in a query in a WHERE condition
that checks whether a value is one of a range, the Parameter Type must be
StringArray. The Value field in the editor of the Default Value attribute displays a
text field for StringArray parameters. Define the range of allowed values in the text
field with each value in a separate row. In the query refering to the array, the
parameter must be added in brackets:

WHERE app.OBJECTSTATE IN (@appState)

• If a string value contains a single quote (like for example in O'Hara), the single quote
will be automatically escaped with a second single quote when the parameter value is
processed. Escaping the single quote with a second single quote is a requirement for
including it into SQL queries. For security reasons, the second single quote is also
added in strings to prevent SQL injection.

• % can be used as wildcard in strings and texts. It is not allowed to define a wildcard in a
value of a string array.

• Boolean values can be selected from a dropdown list. Please note that object class
properties of the type Boolean that are neither mandatory nor having a default value
defined might be set to either true, false or NULL. If the default value is False, only
object class property values defined as false will be returned, while NULL values will

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 166

not be returned. This behaviour can be handled via the SQL commands in the ADIF
scheme.

• For ReferenceArray properties no default values can be defined.

• Mandatory : Select True if the ADIF execution should fail with an error message if no value is
defined for the current execution. Select False, if the ADIF execution should be executed even
if the parameter is not defined for the current execution. The parameter will then be
substituted with the value defined in the attribute Default Value. If no default value is
provided, the parameter will be substituted with NULL.

In ADIF execution, WHERE clauses in SQL commands containing a parameter are not
removed from the query if no value is provided. To make sure that the query result is
meaningful if the parameter value is not provided during ADIF execution and the pa-
rameter is therefore set to NULL, you should define the query to accept NULL val-
ues. For example, to ensure that results are returned if a date compared to an appli-
cation's start date is not returned, the WHERE clause should be written as:

WHERE APPLICATION.STARTDATE >= @StartDate OR @StartDate IS
NULL

5) Use the parameters defined in the Parameters folder in the ADIF export entries of the ADIF export
scheme in the following settings according to demand:

• In the SQL queries defined for any SQL command.

• In the Message attribute of SQL commands of the Result Type DebugMessage.

• In the Connection String attribute of a database export set.

• In the Header Text attribute of export entries for export to Microsoft® Excel® files.

To include a parameter, substitute the actual value with the parameter name within the query or the text string.
Please note that parameters are to be included without any single quotes around the parameter name. If the
parameter type is requiring definition of single quotes around the value, this is handled by the software during
substitution of the parameter name with the parameter value.

For example, a query using the string parameter @orga may be written as:

SELECT app.NAME, app.VERSION

FROM APPLICATION app, ORGAUNIT org

WHERE app.RESPONSIBLEORGANIZATION = org.REFSTR

AND org.NAME LIKE @orga;

If it is during runtime with the value Trade%, the query will read:

SELECT app.NAME, app.VERSION

FROM APPLICATION app, ORGAUNIT org

WHERE app.RESPONSIBLEORGANIZATION = org.REFSTR

AND org.NAME LIKE’Trade%';

A debug message defined in the attribute Message of an SQL command of the Result
Type DebugMessage to be written in the export log file during export of the application
data can refer to the current organization as well:

Export of applications with responsible organization @orga.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 167

During runtime, it will be converted to:

Export of applications with responsible organization Trade%.

StringArray or ReferenceArray parameters need to be included into the query as follows:

WHERE APPLICATION.STATUS IN (@StringArray)

Defining Parameter Values On Execution of ADIF Schemes

Parameters values are defined during runtime on execution of the ADIF import or export. The parameter
name is case sensitive. When defining parameters for execution of the ADIF import or export, you must re-
fer to the parameter name exactly as written in the ADIF scheme, including the starting @. Note the follow-
ing about the definition of values for the parameters:

• If a string value contains a single quote (like for example in O'Hara), the single quote will be
automatically escaped with a second single quote when the parameter value is processed. Escaping
the single quote with a second single quote is a requirement for including it into SQL queries. For
security reasons, the second single quote is also added in strings to prevent SQL injection.

• Parameter values for data types like string or date are defined without single quotes at the
beginning and end. If single quotes are required in the query for the data type, they will be
automatically added by the ADIF mechanisms.

• Boolean values must be defined as 1 (true) or 0 (false):

@MyBooleanValue 1

• String array and ReferenceArray values must be separated with \r\n:

@MyArrayValue First\r\nSecond

Whether and how command line parameters can be defined at runtime depends on the way the ADIF
scheme is executed:

• Starting ADIF via the console application

To specify parameters in the command line of the ADIF console application, start the console application with the com-
mand line option -<parameter name> <parameter value>. A command line option must be specified for each parameter.

To specify the parameters @lastupdate and @orga, the command line could for exam-
ple be defined as:

ADIF_Console.exe -export -msalias Alfabet -alfaLoginName
UserName -alfaLoginPassword pw1234 -scheme AppExport -
exportfile C:\Export\Applications.zip -@lastupdate 09/06/2018
-@orga ITGroup

For general information about starting ADIF via the console application, see Executing
ADIF via a Command Line Tool.

• Starting ADIF via a RESTful service call to the RESTful API of the Alfabet Web Application

Parameters are defined in the JSON body of the request in the field UserArgs returning a JSON object with one field for
each parameter in the format "UserArgs": {" arg1name ":" arg1value "," arg2name ":

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 168

" arg2value "}. The field name must be identical to the variable name and the field value defines the variable value
for the current execution of the ADIF export scheme.

To specify the parameters @lastupdate and @orga, the JSON body of the request
could for example be defined as:

{

"Scheme": "AppExport",

"UserArgs": {"@lastupdate":"09/06/2018","@orga":"ITGroup"},

"Verbose": false,

"Synchron": true

}

If the specification of parameters is not correct in the call, the ADIF job is started, but
execution might fail. Information about the success of the ADIF job execution is not re-
turned to the RESTful service call. The return value from the RESTful service call will in-
form about the last successful execution step, which is start of the ADIF job. The suc-
cess of the ADIF job execution can then be checked for example via the ADIF Jobs Ad-
ministration functionality.

For more information about the ADIF Jobs Administration functionality, see Executing
and Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities
in the Alfabet User Interface.

• Starting ADIF via the ADIF Jobs Administration functionality in the Alfabet User Interface

The ADIF jobs administration functionality does not provide a mechanism to set parameter values. If an
ADIF job shall be started via the ADIF Jobs Administration, it should not contain parameters. If the ADIF
scheme includes parameter definitions, it can only be started via the ADIF Jobs Administration function-
ality with the default values defined in the ADIF scheme for the parameters. The scheme must not include
mandatory parameter definitions.

For general information about starting ADIF via the ADIF Jobs Administration func-
tionality, see Executing and Controlling ADIF via the ADIF Jobs Administration and My
ADIF Jobs functionalities in the Alfabet User Interface.

• Starting ADIF via an event

If you start the ADIF job via an event, parameter values can be handed over during execution of the event
via a query defined in the event template. In the attributes of the event template, the following attributes
must be set:

• Variable Names: If the ADIF scheme contain parameter definitions, the names of the
parameters must be written as comma separated list into this attribute. The specification
must be case sensitive. The values for the parameters must then be provided with the
attribute Values for Variables via Query / Values for Variables via Query as Text.

• Values for Variables via Query / Values for Variables via Query as Text: The query must
return the values for the parameters defined in the attribute Variable Names in the same
order. The query can be defined either via native SQL or via Alfabet query. Use the Value for
Variables via Query attribute to define an Alfabet query. Use the Values for Variables via
Query as Text attribute to define a native SQL query. Alfabet query language parameters can
be used in the query. The base object returned via the Alfabet query language parameter

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 169

BASE depends on the way an event has been triggered. For events triggered via a workflow or
wizard, BASE returns the REFSTR of the object the user was working on in the wizard step or
workflow step triggering the event. For events triggered via an REST API call event, the BASE
object is the same as the one for the event triggering the event.

The query must return a dataset with the column names identical to the parameter names defined with the
attribute Variable Names.

For example if Variable Names is defined as @AppName,@AppVersion, the query
might be defined as:

SELECT REFSTR, NAME AS’@AppName', VERSION AS’@AppVersion'

FROM APPLICATION

WHERE REFSTR = @BASE

For general information about starting ADIF via the Alfabet RESTful services, see the ref-
erence manual Alfabet RESTful API.

• Starting ADIF via a button in the filter panel of a configured report or in the toolbar of an
Alfabet view

If an ADIF job is started via a button in the filter panel of a configured report or in the toolbar of an object
view, the values for the parameter definition in the configured report can be set as follows:

• If the button is defined for an object view or a configured report that is assigned to a base
object class via its Apply to Class attribute, the information about the base object the object
view or configured report is opened for is returned as @BASE. If the ADIF scheme has a
parameter definition with the Name set to @BASE and the Parameter Type set to Reference,
this parameter will be substituted with the REFSTR of the current object on execution of the
ADIF scheme.

• If the button is defined for a configured report that has filter fields, the values set in the filter
fields are handed over as parameter values to the ADIF scheme when the ADIF job is started
via the button. In the ADIF scheme, the Name of the parameter must be identical with the
Name of the filter field and the Parameter Type must be identical to the data type returned
by the filter field.

Please note that the filter field name must start with an @. Standard filter fields that are automatically gen-
erated by default in reports of the type Query based on an Alfabet query are starting with a colon instead
of @ and must be adapted manually.

Comparison between filter fields and parameter names is case sensitive.

If the filters of a configured reports are not set when the ADIF job is executed, no value will be provided for
the ADIF scheme parameter. Therefore, ADIF scheme parameters filled with values from filter fields that are
not mandatory in the configured report should not be defined as mandatory in the ADIF scheme. Either a
default value should be defined for the parameters or NULL value handling should be taken into account in
the SQL commands of the ADIF scheme.

For general information about starting ADIF via a button, see Executing ADIF via a But-
ton in the Alfabet User Interface.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 170

Defining Parameter Values During Testing of the ADIF Scheme

When debugging an ADIF scheme with the ADIF Debugger, no command line can be defined. To set param-
eters for testing, the parameter values for testing can be written into the ADIF scheme.

To specify parameter values for testing in the ADIF scheme:

1) In the ADIF explorer, click the ADIF scheme that you want to specify parameter values for.

2) In the attribute window of the ADIF scheme, set the following attributes:

• Debug Arguments: Define the values for the parameters used in a comma-separated string.
The format of the string must be <parameter name>=<value>. Please note that the values
must not be written into single quotes. If single quotes are required in the query for the
parameter data type, for example for strings, these will be set automatically when
substituting the value in the query.

Mandatory parameters must be defined in the Debug Arguments to test the ADIF scheme via the ADIF De-
bugger. If the parameter is not mandatory and no value is defined for the parameter in the Debug Argu-
ments, the ADIF Debugger will use the default value defined for the parameter. If no default value is de-
fined, the parameter will be substituted with NULL.

For example, to specify export of applications for which the organization responsible for the ap-
plication is variable and the last update of application data is variable, the Debug Arguments
attribute can be specified as:

@lastupdate=09/10/2012,@orga=ITGroup

Configuring Logging Parameters

During export via the ADIF console application, log messages are written to:

• A temporary database table in the Alfabet database.

• The log file of the ADIF console application. By default, this is the log file ADIF_Console.log in the
working directory of the ADIF console application.

Logging information is written to a log file in the following format:

<date and time> <message type> <message text>

For example:

2010-11-30T10:43:24.31Z DEBUG_INFO Query returns 314 records

Log messages are written to the log file in the language specified in the cultures of the Alfabet database. If
the ADIF console application is run with a server alias, the culture specified as the default for the configura-
tion of Alfabet will be used. If the ADIF console application is run with a remote alias, the culture of the re-
mote alias configuration will be used.

For information about configuring cultures for the Alfabet database, see the section Specifying
the Cultures Relevant to Your Enterprise in the chapter Localization and Multi-Language Support
for the Alfabet Interface. in the reference manual Configuring Alfabet with Alfabet Expand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 171

For information about the culture of the remote alias, see the section Configuration Attributes for
the Alfabet Components in the reference manual System Administration.

The timestamp is the UTC time (coordinated Universal Time) and may therefore differ from the time in your
local time zone. The timestamp is written in ISO 8601 combined date and time format as year-month-day-
Thour:minutes:secondsZ.

The message type can be one of the following:

• ERROR: An error occurred. The message describes the type of error.

• WARNING: Problems were encountered during the execution of the utility that are not as severe as
an error. The process was executed but the result should be checked. The message describes the
problem.

• INFO: Information about the normal execution of the utility is given.

• DEBUGINFO: Information about the import process is given. This information is also stored in the
Alfabet database in a temporary database table.

The debug info for execution of SQL commands returns the number of records that are
involved when executing the SQL command. This number can be higher than the num-
ber of objects exported because of database triggers that are executed.

During the import process, emails containing the log information can be sent in a defined time interval to a
configurable email address.

The email is meant as an alive message of the system informing the recipient about the availabil-
ity of an active ADIF process. The content of the email is limited to the one-line content that is
written to the log file at the moment the email is generated and is therefore not suitable for de-
bugging.

Configuring Log File Storage and Handling

The storage of log information and the sending of emails with process-related information is configurable
either in the ADIF import scheme configuration or in the command line when starting the ADIF console ap-
plication. If a configuration can be done both in the ADIF import scheme and the command line, the specifi-
cation via the command line options will overwrite the configuration in the ADIF import scheme.

The following table gives an overview of the configuration options:

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

Time interval for
sending emails
containing current
log information

Debug
Heart Beat

-heartbeat
<time in
minutes>

Specify the time interval in minutes between send-
ing emails with the current log file content of the
ADIF console application during import. By default,
the debug heart beat is set to -1. This means that
no emails will be sent.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 172

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

NOTE: If the import process is finished before the
time interval elapsed for the first time, no email will
be sent.

email address of
the recipient of
the log infor-
mation

Recipient
Mail

-recipient-
mail <email
address>

Specify the email address of the person that shall
receive the content of the log file of the ADIF con-
sole application via email in the configured time in-
terval.

email address
used as sender
address in the
emails with log in-
formation

Sender Mail -sendermail
<email ad-
dress>

Specify the email address that shall be used as
sender email address for emails sent via the ADIF
console application.

Name of the log
file of the ADIF
console applica-
tion

- -logfile
<filename>

Specify the name of the log file of the ADIF console
application. Allowed file extensions are.log and.txt.
The default name is ADIF_Console.log

Location of the log
file of the ADIF
console applica-
tion

- -logpath
<path>

Specify the path to the log file of the ADIF console
application. By default, the log file is stored in the
working directory of the ADIF console application.
The ADIF console application process must have
write access rights to the specified directory.

Amount of data
written to the log
file

- -logverbose If set, all information about the process will be writ-
ten to the log file. If not set, only error messages
and information about the process start and end
will be written to the log file.

Removal of old log
messages from
the log file

- -logclear
<number of
days>

If -nologappend is set, a new log file will be cre-
ated each time the utility is used with the same
specification of -logfile and -logpath. The log
file name will be extended with a timestamp speci-
fying the current UTC time.

NOTE: The scanning process can lead to drawbacks
in performance.

Creation of a new
log file for each
process started

- -nologap-
pend

This option can only be used if -nologappend is
not set. If -nologappend is set, the -logclear
setting will be ignored.

During logging, the log file will be scanned for log
messages with a timestamp older than the number

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 173

Configurable Log-
ging Behavior

Attribute
of the ADIF
Scheme

Command
line Option

Description

of days specified with -logclear and these mes-
sages will be deleted.

If -nologappend is not set, logging information will
be appended to the already existing log file each
time the utility is used.

NOTE : To restrict the file size, you can set the -
logclear option to delete old log messages.

To set the parameters in the ADIF export scheme:

1) In the explorer of the ADIF configuration interface, click the ADIF export scheme that you want to
configure. The attributes of the ADIF export scheme are displayed in the attribute window on the
right.

2) In the attribute window, set the parameters listed in the table above as applicable.

Configuring Log Message Content

ADIF export schemes can be configured to include customer-defined log messages and data sets found via
SQL commands in the log files during execution of the ADIF scheme. Log file content can be added to the
ADIF export scheme via SQL command elements. SQL command elements for debug messages can be lo-
cated in any SQL Commands - < Action Type > folder except the SQL Commands - DataExport folder.

During export execution, the SQL commands in the scheme are executed in the order specified by the com-
mand location in the XML definition. When the SQL command is due for execution, the message defined in
the SQL command element and, if specified, the result of the SQL query as data set, are displayed in the log
message.

In an ADIF export scheme that exports data about applications to a CSV file, information about all
applications for which more than one version exists in the database shall be written to the log file
prior to export execution. An SQL command of the Result Type DebugDataSet is added to the
SQL Commands - OnStart folder of the export entry that triggers the export of the application
data to the CSV file:

In the attribute window, the attribute Result Type is set to DebugDataSet. The data set to be
displayed in the log file is defined by the SQL query defined in the attribute Text. Prior to the
data set, a text explaining the data set shall be displayed in the log file. Therefore, an explanatory
text is added in the attribute Message.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 174

When executing the export, the Message text and the data set resulting from SQL query execu-
tion are added to the log file when the SQL command is due to be executed in the processing or-
der of the ADIF scheme:

Debug messages and data sets can refer to the current import conditions via variables that de-
pend on command line arguments of the ADIF console application when starting the export. For
information on the use of variables to refer to the conditions defined in the command line, see
Configuring Execution of the Import Scheme Dependent on Current Parameters.

Inserting a Static Text Message

To add a static text message to the log file:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands - <
Action Type > that is executed in the order of commands when you want the text message to be
displayed.

2) In the context menu, select Create SQL Command. A new SQL command element is added as
child node of the SQL Commands - < Action Type > folder.

3) Click the new SQL command node and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that gives information about the functionality implemented by
the SQL command.

• Result Type : Select DebugMessage.

• Message: Enter a text that shall be written to the log file at the position of the execution of
this SQL command.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 175

Inserting a Data Set

To include data from the database in the log file:

1) In the explorer of the ADIF configuration interface, right-click the folder SQL Commands - <
Action Type > that is executed in the order of commands when you want the text message to be
displayed.

2) In the context menu, select Create SQL Command. A new SQL command element is added as
child node of the SQL Commands - < Action Type > folder.

3) Click the new SQL command node and specify the following attributes in the attribute window:

• Name: Enter a meaningful name for the SQL command.

• Comments: Enter a comment that gives information about the functionality implemented by
the SQL command.

• Result Type : Select DebugDataSet.

• Message: Enter a text that shall be written to the log file at the position of the execution of
this SQL command prior to the data set resulting from the SQL query defined.

• Text : Define an SQL query with a SELECT statement that returns a data set. The resulting
data set is written to the log file at the position that indicates the execution of the SQL
command. If a text is also defined in the attribute Message, this text is written to the log file
prior to the data set. You can either write the SQL query directly into the attribute field or click

the Browse button to open an editor for the definition of the SQL query. Define the SQL
query in the SQL Text tab of the editor.

• Message: Enter a text that shall be written to the log file as an introduction to the data set.

• Ignore Errors : Select True if you want the export to be executed even if the SQL statement
specified with the attribute Text results in an exception. Select False if you do not want the
import to be executed in case of an error in the SQL statement.

• Is Active : Select True to activate the SQL command. Select False to deactivate the SQL
command.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 176

Chapter 6: Debugging an ADIF Configuration

The ADIF configuration user interface includes a debugging tool. The debugging interface allows data im-
port or export to be run as a test with no persistent impact to the Alfabet database so that you can control
the success of command execution step by step. You can access the debugging tool via the context menu
of the ADIF import or export schemes.

For security reasons, ADIF configuration and debugging should be performed in a test environ-
ment to ensure that no damage occurs to the database in the production environment in case
the configuration of the ADIF scheme or the import data used for import contains errors.

Understanding the Debugger Interface

When the debugger is started for a selected ADIF scheme, a new window opens that displays the structure
of the selected ADIF scheme in an explorer. To the right of the explorer, a debug window opens. Log mes-
sages and information about the process step that is currently being performed are displayed in this win-
dow.

In addition to displaying the log information in the user interface, the ADIF debugger stores the
log messages in a log file in the directory $APPDATA/Temp/Alfabet/<server
name>/Runtime/temp.

 FIGURE: Interface of the ADIF Debugger

A menu is available at the top of the explorer that allows you to control the debugging process.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 177

A Class Tables node is displayed in the explorer below the ADIF scheme node. All relevant database tables
in the Alfabet database are listed under the Class Tables node. You can search the tables via SQL queries
or display information about the meta-model structure that applies to the database table. If the ADIF
scheme includes the definition of temporary tables, these tables are also listed in the explorer under a sep-
arate node Temporary Tables. For details about the information available via the database table nodes, see
Performing a Debug Run.

Understanding the Debugging Process

The following workflow is required for debugging:

• If your database is configured in an XML file, upload it to the database. (optional)

• Configure your ADIF scheme to roll back import/export after the test run.

• Start the debugger.

• Start the debug process and go through the process step-by-step while controlling the
results via the log messages and the resulting changes in the database tables.

• Correct any errors in the configurations, if necessary, and re-start the debugging process
until the ADIF scheme results in the desired data manipulation

• Stop the debugger.

• Configure the ADIF scheme to write data persistently to the database.

• Export your ADIF scheme if you want it to be available via an XML file. (optional)

The following information is available:

• Required Configuration of the ADIF Scheme Prior to Debugging

• Performing a Debug Run

• Required Configuration of the ADIF Scheme After Debugging

Required Configuration of the ADIF Scheme Prior to Debugging

Debugging can only be performed on ADIF schemes that are uploaded to the Alfabet database. If
you defined your ADIF scheme via an external XML editor, you must import it to the Alfabet data-
base via the ADIF configuration interface. For more information about the import and export of
ADIF schemes, see the section External Editors in the chapter Configuring ADIF Schemes.

The debugging process performs all steps configured in an ADIF scheme in order to help you to find and
correct configuration steps that lead to errors or undesired data processing. The debug process is like a
test run and therefore should not perform any changes to existing data in the Alfabet database or the ex-
ternal database that is targeted for data export. Therefore, the ADIF scheme must be configured to roll
back all steps performed during testing:

1) In the ADIF explorer, click the ADIF scheme that you want to debug.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 178

2) In the attribute window of the ADIF scheme, set Commit After Run to False.

The following restrictions apply to setting Commit After Run to False:

• Commit After Run only affects database transactions. If you export data to a file, the
export file is created and data is added to the file also if Commit After Run is set to
False.

• Setting Commit After Run to False rolls back all changes caused by DML statements
(changes to data records in existing tables). Creating or deleting tables is not included in
the roll back. This means, for example, if you test an ADIF scheme that is configured to
write temporary tables to the database persistently, these temporary tables will be
created persistently even if Commit After Run is set to False. SQL Commands of the
type OnActivate are also excluded from roll back.

• When new objects are created during an import job, the data bind mechanism assigns
REFSTR values for the new objects. When Commit After Run is set to False, the objects
are not created in the database, but nevertheless the REFSTR values are regarded as in
use and will not be used for data bind in the next ADIF run unless the Alfabet Server or
Alfabet Expand application used to process the ADIF jobs is restarted.

• Changes triggered by OnActivate commands are not rolled back if the option Commit
After Run is set to False for the import scheme.

It is possible to configure ADIF schemes to include variables in SQL queries. The values of the variables are
provided in the command line of the ADIF console application during execution of the import or export. De-
fault values for the variables can be defined in the ADIF scheme. During the import or export process, the
values for the variables are read from the command line or, if not available from the command line, from the
ADIF scheme configuration and written to a temporary database table for use during import. The name of
the temporary database table is configurable.

For information about defining parameters, see Configuring Import Dependent on Parameters or
Configuring Import Dependent on Parameters.

The debugger does not allow variable values to be set during the debug run. Therefore, the variables must
be defined in the ADIF scheme:

1) In the ADIF explorer, click the ADIF scheme that you want to debug.

2) In the attribute window of the ADIF scheme, set the following attributes:

• Debug Arguments: Define the values for the variables used in a comma-separated string.
The format of the string must be <variable name>=<value>.

Note the following when specifying variables:

• Mandatory parameters must be defined in the Debug Arguments to test the
ADIF scheme via the ADIF Debugger. If the parameter is not mandatory and
no value is defined for the parameter in the Debug Arguments, the ADIF
Debugger will use the default value defined for the parameter. If no default
value is defined, the parameter will be substituted with NULL.

• The values must not be written into single quotes. If single quotes are
required in the query for the parameter data type, for example for strings,
these will be set automatically when substituting the value in the query.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 179

• The specification of both variable and value name is case-sensitive.

• Arguments Table Name : Optionally, specify a name for the temporary database table for the
storage of the variable names and values during the import / export process. The default
table name is ADIF_ARGS.

Performing a Debug Run

Debugging is performed in the debugger window of the ADIF configuration interface.

A debug run is like a test export or import of data. If you want to test the import of data, you must
provide data to be imported on the local file system in a ZIP file or enable access to the database
that you want to import data from.

1) In the ADIF explorer, right-click the ADIF scheme that you want to debug and select Start
Debugger.

The debugger opens with the selected ADIF scheme displayed in the explorer.

2) In the menu, click the Start button.

3) If import from files or export to files is configured in the ADIF scheme, an explorer window will
open.

• For export schemes, specify the name and location of the.zip file where data shall be
exported. If the file does not exist, it will be created during the process. If it does exist, it will
be overwritten.

• For import schemes, specify the name and location of the.zip file containing the files where
the data that shall be imported.

In the explorer, a red arrow is displayed in front of the ADIF scheme indicating the starting point for
the import/export process. A Debug Window opens that provides information that the ADIF
scheme was initialized and displays the XML code of the currently processed element of the ADIF
scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 180

4) In the menu, click the Step Over button. The next step of the import or export process is
performed. The message in the ADIF Debug Window changes and provides information about the
success of the next step.

5) Repeat step 4 for each process step. You can use the following mechanisms to check whether the
result of your configuration is as expected:

• Check the error message in the ADIF Debug Window to be notified about the success of the
step execution. If an error occurs, the red arrow in the explorer indicates which part of the
import scheme is affected. The XML code for the element is displayed in the debug message
so that you can scan the code for errors.

• To check the XML code of any other element of the ADIF scheme, click the element in the

explorer and click the Show Definition button in the menu of the ADIF debugger.

• To check whether unexpected results are caused by wrong interpretation of the Alfabet
meta-model, information can be displayed about the object classes of the Alfabet meta-
model and their properties. To see a documentation of the requirements for data import to the
database table of an object class, right-click the class under the Class Tables sub-node of
the ADIF debugger’s explorer and select Show Class Definition.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 181

• When the result of a step is the creation of a temporary table, you can see the temporary table
listed under the sub-node Temporary Tables of the ADIF debugger’s explorer.

• When data is written to either a temporary table or a database table of the Alfabet meta-
model, check the resulting data sets in the table. To check the content of a database table,
click the database table under either the Class Tables or Temporary Tables sub-node of the

explorer, and click the New SQL button in the menu. A new window opens with a
predefined query that finds the first hundred rows in the database table. You can alter that
query to search the database table for the expected changes. In the menu, click the Execute

SQL button to see the result of your query.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 182

The RELATIONS table is not displayed as sub-node of the Class Tables node. Never-

theless, it can be controlled by clicking the New SQL button and defining a SE-
LECT statement targeting the RELATIONS table.

It is recommended that you check the changes to database tables even if a step
creating table entries does not lead to an error message. Error messages in a later
step can be caused by missing, incomplete, or wrong data generation in a previous
step.

If the Alfabet database is located on an Oracle® database server, integers are dis-
played as numbers of the data type Real. Oracle® database servers store integers in
the data type NUMBER and returns decimal numbers as an SQL search result.

6) In case of an error in the progress of data import or export, click the Stop button in the menu,
close the debugger and correct the error in the ADIF scheme configuration via the ADIF explorer.
Then proceed with step 1 of the debugging process.

A rollback of data is performed when closing the debugger independent of the attribute
Commit After Run.

7) After the successful execution of the debugger, a log file will be displayed that provides
information about the overall progress of the process. Exit the debugger.

Required Configuration of the ADIF Scheme After Debugging

After successful debugging, the ADIF scheme must be configured to write data persistently to the Alfabet
database:

1) In the ADIF explorer, click the ADIF scheme that has been debugged.

2) In the attribute window of the ADIF scheme, set Commit After Run to True.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 183

If you want the ADIF scheme to be available as an XML file, you must export it from the Alfabet
database via the ADIF configuration interface. For more information about the import and export
of ADIF schemes, see the section External Editors in the chapter Configuring ADIF Schemes.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 184

Chapter 7: Starting Data Import, Export, or Manipulation via ADIF

After you have configured the ADIF interface and controlled your configuration via the ADIF debugger, you
can use the configured ADIF scheme for data import or export or data manipulation either on request or on
a regular basis.

There are a number of options to execute ADIF import, export or manipulation of data:

• Software AG provides a Windows® command line tool ADIF_Console.exe to execute import, export
or manipulation of data.

• The Alfabet RESTful service provide the ability to execute ADIF import or export schemes via a
RESTful service call.

• The ADIF import or export can be triggered via an event that is started in the background when a
user enters or exits a wizard or workflow step.

• ADIF import or export can be triggered by the user via a customer defined button added to the
toolbar of an Alfabet view on the Alfabet user interface.

• ADIF import or export can be controlled or triggered from the Alfabet user interface in the
functionality ADIF Jobs Administration.

• ADIF import or export can be scheduled for future execution via the Job Schedule functionality.

ADIF imports may trigger a high number of single database insert and delete transactions. This
can have a negative impact on fragmentation of indices. As a result, CPU usage is increased and
performance is reduced. It is recommended to rebuilt indexes in regular intervals for object clas-
ses subject to ADIF import. This can be done using the command line tool AlfaAdministrator-
Console.exe. For more information, see Rebuilding Indexes on Database Tables in the reference
manual System Administration.

The following information is available:

• Executing ADIF via a Command Line Tool

• Executing ADIF via RESTful Service Calls

• Executing ADIF via an Event

• Executing ADIF via a Button in the Alfabet User Interface

• Configuring the ADIF Scheme to be Executable via the User Interface

• Adding a Button for ADIF Execution to a Configured Report

• Adding a Button for ADIF Execution to an Object View

• Executing and Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities in
the Alfabet User Interface

• Configuring Availability of ADIF Execution and Control in the User Interface

• Configuring Asynchronous Execution

• Controlling Success of Executed ADIF Jobs

• Executing ADIF

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 185

• Testing ADIF Scheme Execution

• Scheduling ADIF Jobs for Execution at a Defined Time With the Job Schedule Functionality

• Preconditions for Using the Job Scheduler

• Creating Categories for the Job Schedule Use Case

• Configuring the ADIF Scheme to be Executable via the Job Schedule Functionality

• Configuring Access Permissions to Folders in the Internal Document Selector for the
Job Schedule

• Configuring a User to Execute Self-Reflective Events

• Changing the Interval for Checking the Queues of Scheduled Events and ADIF Jobs

• Scheduling ADIF Jobs via the Job Scheduler Functionality

• Creating a Job Schedule for ADIF Export

• Creating a Job Schedule for ADIF Import

• Creating a Job Schedule for Batch Deletion of Old ADIF Session Information

• Checking the Success of ADIF Execution

Executing ADIF via a Command Line Tool

After you have configured the ADIF interface and controlled your configuration via the ADIF debugger, you
can use the configured ADIF scheme for data import or export or data manipulation either on request or on
a regular basis.

Software AG provides a Windows® command line tool ADIF_Console.exe to execute import, export or
manipulation of data.

For security reasons, the following recommendations should be considered for the import of data
to the Alfabet database or for export of data to external databases:

• Test the import of data in a test environment prior to the import to a production
environment for each import performed via the ADIF console application to ensure that
the correct changes are applied.

• Backup the production database prior to the import of data.

Executa-
ble

ADIF_Console.exe located in the Programs sub-directory of the installation directory of

the Alfabet components.

Precon-
ditions

An AlfabetMS.xml configuration file with a server alias configuration specifying the con-
nection to the Alfabet database is available and the respective functionality is configured.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 186

Logging Log information is written to a log file and to the Alfabet database. Logging is configurable
via the ADIF scheme used or in the command line. For more information about logging, see
Configuring Logging Parameters and the list of command line options below.

Com-
mand line
help

Start executable with -h or -help

Executables for batch jobs can be started in a command line or by means of a Windows® batch job.

When executing a Windows batch job, the execution time for a batch job is defined with the help of the Win-
dows scheduler for batch jobs. When starting the executable with a command line, the batch job is exe-
cuted immediately.

The setting in the Application Server tab must be identical in all server alias configurations of all Alfabet
components including batch utilities.

Providing Relevant Data and Configuration

The ADIF console application requires access to the following files to be executed:

A fully configured ADIF scheme

The ADIF import or export scheme must be completely configured and debugged before starting the data
import or export. The ADIF scheme can be provided as an XML file on the local host or as part of the Alfabet
database.

When using an ADIF scheme from an XML file, you must ensure that no ADIF scheme with a
Name attribute exists in the Alfabet database that is identical to the Name attribute of the ADIF
scheme in the XML file.

The ADIF scheme in the XML file is temporarily loaded to the Alfabet database during import and
deleted from the Alfabet database after the import/export process. If an ADIF scheme with the
same Name is available in the Alfabet database when starting the ADIF console application, this
ADIF scheme will be overwritten by the ADIF scheme in the XML file and deleted after the im-
port/export process.

An AlfabetMS.xml configuration file

For access to the Alfabet database, an AlfabetMS.xml configuration file with an alias configuration must
be available.

The way batch jobs are executed depends on the setting of the attributes in the Application Server tab of
the server alias configurations of the Alfabet components:

• If Use Event Queue for All Jobs is selected, all server processes are scheduled via event queueing.
The ADIF console application schedules a job for execution of the ADIF job in the Alfabet database.
The Alfabet Server scans the queue of jobs to be processed in regular intervals and processes the
incoming jobs. More than one ADIF job can be processed in parallel via different threads. The Alfabet
Server only starts jobs in parallel if they do not write data into the same database table in the Alfabet
database.

This is the recommended option that will be maintained in future releases.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 187

• If Use Application Server and Net Remoting Service is selected, the ADIF console application
hands the job over to the Alfabet Server for execution. The ADIF console application waits until the
Alfabet Server finishes the execution and then retrieves the log and the success status from the
Alfabet Server. The Alfabet Server executes only one ADIF job at the same time. By default, if you try
to start an ADIF job while another job is running, your new job will be terminated with an error
message. However, you can configure the ADIF console to queue jobs for execution. A maximum
queue time must be defined in the command line to queue the job. If a queue time is defined, and a
job is started while another job is still running, the new job will be queued and will start when the first
job is finished. If the job is queued longer than the defined maximum queue time, it is deleted from
the queue without being executed.

If a remote alias is used for execution of the ADIF console application, the corresponding Alfabet Server
must be running. If a server alias is used, all other Alfabet applications with access to the Alfabet database
must be stopped.

This method will be deprecated in the future because it will not be compatible with the upcoming .NET Core
component.

When starting the ADIF console application, the alias configuration name must be specified in the command
line. If the AlfabetMS.xml configuration file containing the alias configuration is not located in the work-
ing directory of the ADIF console application, the path to the file must additionally be specified in the com-
mand line.

For import: Access to data that shall be imported

If the data shall be imported from files, the files containing the data must be located either in a single *.zip
file or in a single import directory. If files are located in an import directory, the ADIF console application will
create a ZIP file containing all files located in the import directory for use in data import as part of the im-
port process.

When import shall be performed from an XML file referring to a DTD file, the DTD must also be lo-
cated in the import ZIP file or import directory respectively.

Files are uploaded to the Alfabet database and deleted from the database after import was performed.
Whether the import files on the local host are changed by the import process depends on the import
scheme configuration. For more information, see Configuring Data Import with ADIF.

If data is imported from multiple import files in one ADIF import and a specified import files are missing, im-
port from all other files is performed and a warning is written to the log file that import of data from the
missing file could not be performed.

Starting the ADIF Console Application

Start ADIF_Console.exe with the command line options listed in the table below to perform a data import
based on an ADIF import scheme. If a command line option requires a parameter definition and the parame-
ter includes whitespaces, the parameter must be written in inverted commas. For example:

ADIF_Console.exe -import -msalias Alfabet -scheme "Application Import"

For the import of data, you must start ADIF_Console.exe with at least:

• a specification of the alias configuration defining access to an Alfabet Server or a Alfabet database,

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 188

• the import scheme and, if data is imported from files,

• the location of the import files in the local file system:

ADIF_Console.exe -import -msalias <alias name> [-scheme <scheme
name> -importfile <file name>.zip]

For export of data, you must start ADIF_Console.exe with at least:

• a specification of the alias configuration defining access to an Alfabet Server or a Alfabet database,

• the export scheme and, if data is exported to files,

• the location in the local file system where the export files shall be stored

ADIF_Console.exe -export -msalias <alias name> -alfaLoginName <user
name> -alfaLoginPassword <user password> [-scheme <scheme name> -
importfile <file name>.zip]

Command Line Op-
tion

Mandatory/
Default

Explanation

-<action> Mandatory To import data, start the console application with

-import

To export data, start the console application with

-export

In the command line help that can be called with the -h command
line option, a -update action type is also listed next to -import
and -export. This option is for internal use by Software AG only
and must not be used.

-msalias <alias
name>

Mandatory Enter the alias name as specified in the AlfabetMS.xml configu-
ration file.

-msaliasesfile
< Alfabet configu-
ration file path>

Optional If the AlfabetMS.xml configuration file that contains the speci-
fication of the alias is not located in the same directory as the ex-
ecutable, the path to the AlfabetMS.xml file must be specified
with this parameter.

-alfaLoginName
<user name>

Mandatory User name for access to the Alfabet database. The user specified
by this login name will be written to the audit history of changed
objects as responsible for changing the data.

 A user can only execute a batch job if the Can Execute
Batch Jobs checkbox is selected (=True) for the user.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 189

Command Line Op-
tion

Mandatory/
Default

Explanation

-alfaLoginPass-
word <user pass-
word>

Optional Password for access to the Alfabet database.

-scheme Optional Specify the name of the ADIF scheme stored in the Alfabet data-
base that contains the configuration of the data import/export.

NOTE : It is mandatory to specify this option or the option -
schemefile. Only one of the options can be specified in a com-
mand line. Which of the options is applicable will depend on the
location of the ADIF scheme.

-schemefile Optional Specify the name of and path to the XML file of the ADIF scheme
that contains the configuration of the data import/export.

NOTE : It is mandatory to specify this option or the option-
scheme. Only one of the options can be specified in a command
line. Which of the options is applicable depends on the location of
the ADIF import scheme.

 If a scheme with the same name as the scheme in the ex-
ternal XML file exists in the Alfabet database when running the
job, the scheme in the Alfabet database will be deleted. This
mechanism is implemented to ensure that only one version of a
scheme exists. If the scheme is called via an external XML file, it is
supposed that the scheme with the same name in the Alfabet da-
tabase is outdated and no longer used.

-waittime Optional Only applicable if Alfabet components are using event queueing
for processing of ADIF jobs.

Specify the time in minutes that the process shall wait if another
ADIF process is running. Two processes cannot run in parallel. A
new process is only queued for execution if the command line op-
tion-waittime is set. If the currently running process is not fin-
ished during the configured wait time, the queued process will be
deleted.

If -waittime is not set and a process is started while another
process is currently running, the new process is terminated and
an error message is given.

-idletime Optional Only applicable if Alfabet components are using event queueing
for processing of ADIF jobs.

The batch utility waits for alive messages from the Alfabet Server
and if none are received within 60 seconds, the job will be can-
celled. The allowed wait time for alive messages can be changed
by defining a new time interval in seconds with -idletime.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 190

Command Line Op-
tion

Mandatory/
Default

Explanation

-synchronously Optional Only applicable if the Alfabet components are using event queue-
ing for processing of ADIF jobs. If this parameter is added to the
command line, the ADIF console application will check the event
queue for the status of the scheduled event until the event is
processed and will return the status of the finished ADIF job exe-
cution.

-<variable name> Optional When the ADIF scheme is configured to use variables, the varia-
bles can be specified in the command line. For each variable, a
separate command line option must be specified as

-<variable name> <value>

For example:

-@fiscalyear 2009

For more information about the use of variables, see Configuring
Execution Dependent on Current Parameters in the description of
the export configuration or Configuring Import Dependent on Pa-
rameters in the description of the import configuration.

Import-specific command line options

-importfile Optional Specify the name of and path to the ZIP file containing the files
from which data shall be imported.

NOTE : If the import scheme configuration defines import from
files, it is mandatory to specify this option or the option-im-
portdir. Only one of the options can be specified in a command
line.

-idletime Optional Specify the name of and path to the directory containing the files
from which data shall be imported.

NOTE : If the import scheme configuration defines import from
files, it is mandatory to specify this option or the option -import-
file. Only one of the options can be specified in a command line.

Export-specific command line options

-exportfile Optional Specify the name of and path to the ZIP file to which the data will
be written. If the file does not exist, it will be created; if it does ex-
ist, it will be overwritten. If the path does not exist, the ADIF ex-
port cannot be executed. The export mechanisms can create
files, but it cannot create directories.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 191

Command Line Op-
tion

Mandatory/
Default

Explanation

NOTE: If the ADIF export scheme configuration defines export to
files, it is mandatory to specify this option.

-unzip
<true|false>

Optional If set to true, the ZIP file to which the export data is written is
unzipped after the export. The files with the export data are then
located in the directory specified as the location for the ZIP file as
well as in the ZIP file.

If set to false, the ZIP file to which the export data is written is
not unzipped and the data is available in zipped format only.

Logging-specific command line options

-logpath <log file
path>

Log file is
stored in the
working di-
rectory of the
executable.

Specification of a path to a directory for storage of the log file.

-logfile <log file
name>

<Executa-
ble>.log

Specification of the log file name. Allowed file extensions are LOG
and TXT.

-logverbose If -logverbose is set, additional information about the running
process is logged. The content of additional information mes-
sages depend on the utility used.

NOTE: Verbose logging is in most cases not required and can lead
to a decrease in performance.

-nologappend If -nologappend is set, a new log file is created each time the
utility is used with the same specification of -logfile and -
logpath. The log file name is extended with a timestamp specify-
ing the current UTC time.

If -nologappend is not set, logging information is appended to
the already existing log file each time the utility is used.

NOTE : To restrict the file size, you can set the -logclear option
to delete old log messages.

-logclear <num-
ber of days>

Infinite This option can only be used if -nologappend is not set. If -
nologappend is set, the -logclear setting is ignored.

During logging, the log file is scanned for log messages with a
timestamp older than the number of days specified with -log-
clear and these messages are deleted.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 192

Command Line Op-
tion

Mandatory/
Default

Explanation

NOTE: The scanning process can lead to drawbacks in perfor-
mance.

-heartbeat -1 Specification of the time between sending emails with the cur-
rent content of the log file to the recipient specified with the op-
tion -recipientmail. If -1 is specified or a heartbeat is not de-
fined, no email will be sent out and log information is exclusively
available via the log file of the ADIF console application.

NOTE: The email is meant as an alive message of the system in-
forming the recipient about the availability of an active ADIF pro-
cess. The content of the email is limited to the one-line content
that is written to the log file at the moment the email is generated
and is therefore not suitable for debugging.

NOTE: The interval for sending the emails can also be specified
with the Debug Heart Beat attribute of the ADIF scheme speci-
fied with the option -scheme or -schemefile. A specification in
the command line overwrites a specification in the ADIF scheme.

NOTE : The recipient’s and sender's email address must also be
specified either in the command line or in the ADIF scheme speci-
fied with the option -scheme or -schemefile to send infor-
mation about the logging process via email.

-sendermail Specification of the email address used as sender address in
emails with log information sent out in the interval specified
with-heartbeat to the recipient specified with -recipient-
mail.

NOTE: The sender email address can also be specified with the
Sender Mail attribute of the ADIF scheme specified with the op-
tion -scheme or -schemefile. A specification in the command
line overwrites a specification in the ADIF scheme.

-recipientmail Specification of the email address used as recipient address in
emails with log information sent out in the interval specified with
-heartbeat.

NOTE: The recipient email address can also be specified with the
Recipient Mail attribute of the ADIF scheme specified with the
option -scheme or -schemefile. A specification in the command
line overwrites a specification in the ADIF scheme.

Executing ADIF via RESTful Service Calls

ADIF export or import can be triggered via a RESTful service call to the RESTful API of the Alfabet Web Ap-
plication.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 193

The service call requires that the Alfabet RESTful service interface is activated and all access permissions
are set accordingly.

The execution of ADIF import or ADIF export via a RESTful service call can either be triggered by an external
application sending the request to the RESTful API of the Alfabet Web Application or via an event that is
automatically triggered from a workflow step or a wizard step.

For information about the required settings and the service call for execution ADIF import or ADIF export
from a RESTful service client, see the reference manual Alfabet RESTful API.

For information about the configuration of events, see Configuring Events in the reference manual Config-
uring Alfabet with Alfabet Expand.

Executing ADIF via an Event

Event management provides a means to automatically execute an ADIF import or export job automatically
as a consequence of a defined user action on the Alfabet user interface. The ADIF import or export can be
executed either on the same or on a different Alfabet database.

The following user activities can be specified to trigger events:

• When a wizard step is entered, exited, or cancelled.

• When a workflow step is entered, refused, expired, or exited.

• When an event template configured to send a RESTful service call is finished.

The execution of the event is performed via a RESTful service call to the RESTful API of the Alfabet Web Ap-
plication that triggers the ADIF scheme execution as defined in the event.

For information about the configuration of events, see Configuring Events in the reference manual Config-
uring Alfabet with Alfabet Expand.

Executing ADIF via a Button in the Alfabet User Interface

You can start ADIF jobs via a custom button in the filter panel of a configured report or in the toolbar of
custom object views. The toolbar button is then available for the object profile and all object cockpits de-
fined for the object view.

The ADIF scheme triggered via the ADIF job can include parameters that refer to the filter fields in the filter
panel of the configured report as well as to the base object of the configured report or the object that the
user is working with in the object view. For information about how to include parameters into ADIF
schemes, see Configuring Execution of the Import Scheme Dependent on Current Parameters in the chap-
ter Configuring Data Export with ADIF or Configuring Import Dependent on Parameters in the chapter Con-
figuring Data Import with ADIF.

If the ADIF job exports data to a file, the exported file or files will be provided for download in a zip file
named <ADIF scheme name>_<timestamp>.zip.

If the ADIF job imports data from file, the user is prompted to select a file from the local file system.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 194

Success of the execution can be controlled via the functionalities ADIF Jobs Administration and My ADIF
Jobs. For more information, see Executing and Controlling ADIF via the ADIF Jobs Administration and My
ADIF Jobs functionalities in the Alfabet User Interface.

To start an ADIF job via a button in a configured report or object view, both the ADIF scheme the job is exe-
cuting and the configured report or object view must be configured as described in the following sections:

• Configuring the ADIF Scheme to be Executable via the User Interface

• Adding a Button for ADIF Execution to a Configured Report

• Adding a Button for ADIF Execution to an Object View

Configuring the ADIF Scheme to be Executable via the User Interface

To configure an ADIF scheme to be executable via the Alfabet user interface:

1) In the explorer of the ADIF tab of Alfabet Expand, click the ADIF scheme that shall be executed via
button interaction.

2) In the attribute window, set the attribute Alfabet User Interface Behavior to
VisibleExecutable.

Adding a Button for ADIF Execution to a Configured Report

To create a button for ADIF execution in the filter panel of an existing configured report with a filter panel:

1) In the explorer of the Reports tab of Alfabet Expand, expand the node of the configured report
that you want to add a button to.

2) Double click on the report view node beneath the configured report node. The report view opens in
the middle pane.

3) In the toolbar of the middle pane, click the Button interface control and then click into the
filter panel. A new button is added to the filter panel. You can optionally change the location and
size of the field on demand.

4) In the attribute window, define the following attributes for the new button:

• Name: Optionally, change the technical name of the button to a meaningful value. The name
is a technical name and should not contain special characters or whitespaces.

• Caption: Change the caption of the button to the text that shall be displayed in the button to
the user on the Alfabet user interface.

• Hint: Enter text for a tooltip. The tooltip will be displayed when the user points to the button.

• Sub-Type : Select ADIF_Button.

• XML Definition: Click the Browse button and enter the following XML code into the editor
that opens:

<ADIF_Button Type="ExportType" Scheme="SchemenameFileRequired="false">

</ADIF_Button>

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 195

Set the Type XML attribute to Export to trigger an ADIF export or to Import to trigger an ADIF import.

Enter the name of the ADIF scheme that shall be executed into the Scheme XML attribute.

If the ADIF scheme shall not export to a file, add the XML attribute FileRequired and set it to false.

5) In the toolbar of Alfabet Expand, click the Save button.

Adding a Button for ADIF Execution to an Object View

To create a button for ADIF execution in the toolbar of an existing custom object view:

1) In the explorer of the Presentations tab of Alfabet Expand, navigate to the custom object view
that you want to add a button to.

2) Right-click the custom object view and select Create Button. The new button is
displayed below the custom object view node.

3) Click the new button to activate the attribute window and define the following attributes, as
needed:

• Button Type : Select Action.

• Name: Enter a unique name for the button. Special characters are not allowed. This value is
displayed in the solution interface if the Caption attribute has not been defined.

• Caption: Enter the caption that should be displayed on the button. If no caption is defined,
the value in the Name attribute will be displayed on the button.

• Operation : Select ADIF_Operation.

• Apply Operation To : If the ADIF scheme uses the parameter @BASE to refer to the current
object, set this parameter to Base Instance to define that the button will provide
information about the base object the user is currently working with.

• Disable In Show Mode : Select True if the button should only be available to the users with
ReadWrite access permissions to the object. Select False if the button should be available to
any user accessing the object’s object profile.

• Icon: Select an icon to display on the button. The icon should not be larger than 22 x 22 pixel.

• Hint: Enter text for a tooltip. The tooltip will be displayed when the user points to the button.

4) To sort the order of the buttons created for the object profile, click the object view that the
buttons have been created for to activate the attribute window. In the Buttons attribute, click the

Browse button. An editor opens that allows the sequence of the buttons in the toolbar to be

defined via the Up/Down button. Sort the buttons and click OK to close the editor.

5) In the toolbar, click the Save button.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 196

Executing and Controlling ADIF via the ADIF Jobs Administration
and My ADIF Jobs functionalities in the Alfabet User Interface

You can start ADIF import and export and control the success of execution directly in the Alfabet user in-
terface.

Two business functions are available for execution and control of ADIF jobs:

• The business function ADIF Jobs Administration (ADMIN_AdifJobs) for execution and test of ADIF
import or export and for checking the success of ADIF imports and ADIF exports.

• The business function My ADIF Jobs (USER_AdifJobs) for checking the success of ADIF import or
export executed by the current user.

The following information is available:

• Configuring Availability of ADIF Execution and Control in the User Interface

• Configuring Asynchronous Execution

• Configuring Access Permissions to Folders in the Internal Document Selector for
Asynchronous Export to File

• Configuring a User to Execute Self-Reflective Events

• Controlling Success of Executed ADIF Jobs

• Executing ADIF

• Testing ADIF Scheme Execution

Configuring Availability of ADIF Execution and Control in the User
Interface

The following configuration is required to administrate and/or execute ADIF jobs in the Alfabet user inter-
face:

• Make the functionalities available to the user via the user profile, guide page or guide view
configuration.

For information about adding business functions directly to user profiles, see Making
Functionalities Accessible to a User Profile. For information about adding business func-
tions to user profiles via guide pages or guide views, see the reference manual Designing
Guide Pages for Alfabet.

• The availability of ADIF jobs in the functionalities is controlled per ADIF scheme. By default an ADIF
scheme and the ADIF jobs executed for the ADIF scheme are not visible on the Alfabet user
interface. Set the attribute Alfabet User Interface Behavior to one of the following values to
enable execution and administration or administration only via the Alfabet user interface:

• VisibleNotExecutable: Information about the execution of ADIF jobs based on the ADIF
scheme will be visible in the ADIF Jobs Administration and My ADIF Jobs functionalities. If

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 197

the user selects the ADIF scheme in the ADIF Jobs Administration functionality, the buttons
for execution of the ADIF import or ADIF export will be deactivated.

• VisibleExecutable: Information about the execution of ADIF jobs based on the ADIF
scheme will be visible in the ADIF Jobs Administration and My ADIF Jobs functionalities.
The user can execute an ADIF import or ADIF export via button interaction in the ADIF Jobs
Administration functionality.

It is not possible to define parameters for ADIF jobs executed via the user interface.
ADIF jobs that depend on parameters handed over during execution should not be
set to VisibleExecutable.

• ADIF jobs can be configured synchronously or asynchronously via the ADIF Jobs Administration
functionality. Asynchronous execution is recommended to avoid problems caused by long running
ADIF jobs blocking the current user session. Asynchronous execution requires the implementation of
a set of preconditions described below in the section.

Configuring Asynchronous Execution

ADIF jobs can be executed asynchronously via the ADIF Jobs Administration or My ADIF Jobs functional-
ities. Synchronous execution blocks the current user session as long as the ADIF job is running. It is there-
fore recommended to use asynchronous execution.

In addition to the configuration described in this section, the following preconditions apply to enable asyn-
chronous execution:

• A running Alfabet Server must be connected to the same database as the Alfabet Web Application
providing the asynchronous ADIF execution functionality on the user interface.

• The RESTful services of the Alfabet Web Application must be activated and configured as described
in the chapter Activating the Alfabet RESTful API on Server Side of the reference manual Alfabet
RESTful API with Has ADIFAPIInvocation Access permissions granted in the server alias of the
Alfabet Web Application.

• Configuring Access Permissions to Folders in the Internal Document Selector for Asynchronous
Export to File

• Configuring a User to Execute Self-Reflective Events

Configuring Access Permissions to Folders in the Internal Docu-
ment Selector for Asynchronous Export to File

ADIF export to file via asynchronous execution can exclusively target the Internal Document Selector.
Export of data to the local file system is not available for asynchronous execution.

The asynchronous export requires setting of explicit access permissions for folders of the Internal Docu-
ment Selector.

To define the IDOC folders that are accessible via asynchronous execution:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 198

1) In the Presentation tab of Alfabet Expand, expand the explorer node XML Objects >
Administration.

2) Right-click on the XML object IDocManagerConfiguration in the explorer and select Edit XML

from the context menu. The XML object opens in the middle pane.

3) Enter the following code:

<IDocManager>

<UseCase Name="JobSchedule" >

<Folder Name="FolderShowName" Path="IDOC:\Path" />

</UseCase>

</IDocManager>

The XML element UseCase can have multiple child elements Folder, each defining one folder that
shall be accessible via the job scheduler. Define the folder with the following XML attributes of the
XML element Folder:

• Name: Define a caption that shall be displayed for the folder in the editor for selecting the
target file for ADIF export to file. The name does not have to be identical to the name of the
folder in the Internal Document Selector.

• Path: Define the path to the folder in the Internal Document Selector. The path must start
with IDOC:\ and end with the name of the selected folder. Backslashes must be used
between folder names. The ADIF export mechanism can read and write in the defined folder
and all subordinate folders of the defined folder. All subordinate folders are also listed for
selection in the editor for selecting the target file for ADIF export to file.

4) In the toolbar, click the Save button.

Configuring a User to Execute Self-Reflective Events

The user selected for execution of events of the type SelfReflective will be used for authentication of
RESTful service calls to the RESTful API of the Alfabet Web Application for both wakeup events involved in
job scheduling and for all other event based activities that involve execution via the RESTful API.

For more information about triggering actions via event templates, see the chapter Configuring
Events.

It is recommended to create a user that is exclusively used for executing events via the RESTful services.
The user can be excluded from access to any objects except for executing job schedules, asynchronously
starting ADIF jobs via the user interface, and start of workflows, RESTful service calls and/or execution of
ADIF jobs via events based on event templates, but it is also possible to use an existing user.

The user must be a named user with at least one user profile assigned. The user profile is not used for eval-
uation of access permissions. A ReadOnly user profile is sufficient to execute the RESTful services in the
context of events, asynchronous ADIF execution and job scheduling.

Only one user can be selected for execution of events of the type SelfReflective. If you assign this
functionality to a user while another user has already been selected to execute self-reflective events, the
setting is removed from that user when it is set for the user you are currently assigning it to. Therefore, if a
user has already been defined in the context of the activation of any other functionality, you should add

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 199

the required access permissions described below to this user instead of creating another user to make sure
that the permissions for the functionality the user was created for is maintained.

To create a user for execution of self-reflective events in the User Administration functionality on the
Alfabet user interface:

The same functionality is also available via the Alfabet Administrator. For information about ac-
cessing the user management functionalities of the Alfabet Administrator see Functionalities
Available via the Expanded Explorer of the Connected Alias in the reference manual System Ad-
ministration.

1) In the toolbar of the User Administration view, select New > Create New User. An editor opens.

2) In the editor, define the following:

Basic Data tab:

• Name: Enter a meaningful name for the user. The user is a technical user. You can either
assign the name of an existing person to it or give it a name that indicates that this is a virtual
person defined to execute a functionality.

• User Name: Enter a user name. The user name is used by the RESTful services to identify the
user.

• Type : Select NamedUser.

API Permissions tab:

• Has API V2 Access: Select the checkbox.

• API Access Options: Make sure that the following permission are selected:

• Has ADIFAPIInvocation Access for the asynchronous execution of ADIF schemes via
the user interface.

• Generate API Password : Click the button. The API Password field is filled. For events of the
type Query, copy the API User Name and the API Password. These have to be entered into
the specification in the XML object AlfabetIntegrationConfig described below in the
section Configuring the Connection Parameters in the XML Object AlfabetIntegrationConfig.

3) Click OK to close the editor. The new user is added to the table in the User Administration view.

4) Select the user in the table and select Action > Set as Executes Self-Reflective Events User in
the toolbar.

5) Select the user in the table and click the Navigate button.

6) In the object profile of the user, click Assigned User Profiles.

7) In the toolbar of the Assigned User Profiles view, click New > Assign User Profiles.

8) In the selector, select a user profile and click OK to assign it to the user. For a user that is
exclusively used for events, it is recommended to use a ReadOnly user profile.

The configuration described above is the configuration required for the asynchronous execution of ADIF
jobs only. In addition, you can set any other properties of the user. For security reasons you might also con-
sider to assign a login password to the user although the user password is not required for the Job Sched-
ule functionality. For information about the available configuration options for users, see Defining and
Managing Users in the reference manual User and Solution Administration.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 200

Controlling Success of Executed ADIF Jobs

In the ADIF Job Administration and My ADIF Jobs functionalities, executed ADIF jobs are listed in an ex-
pandable dataset that shows information about ADIF job execution in the structure that is defined for the
ADIF schemes in Alfabet Expand:

• The first level displays the root node and informs about the overall number of executed events
matching the search conditions defined in the filter of the view.

• The second level displays ADIF scheme groups and ADIF schemes that are located directly under the
root node.

• The third level displays the ADIF schemes in the ADIF group, or, for ADIF schemes located directly
under the root node, the list of executed jobs.

• The fourth level displays the execution of ADIF jobs for ADIF schemes assigned to a group. The level
has two sections Executed Job/s and Started Job/s. If an ADIF job is started asynchronously, the
ADIF job is listed in the Started Job/s section during execution. After execution is finished, it is
moved to the Executed Job/s section. Please note that asynchronous ADIF jobs are not listed in
any of the sections as long as they are scheduled for execution at the server but execution has not
been started yet. Synchronous execution of ADIF schemes inhibits reload of the view and therefore
the jobs will never be visible in the Started Job/s section.

If ADIF jobs have been executed for an ADIF scheme one or multiple times, each execution is listed as a
separate row under the heading Executed Job/s with the following information about the ADIF job execu-
tion:

• ADIF Scheme Group: The name of the ADIF scheme group the ADIF scheme is assigned to.

• ADIF Scheme: The caption of the ADIF scheme the ADIF job is executing.

• ADIF Scheme Type: Displays EXPORT for execution of an ADIF export scheme or IMPORT for
execution of an ADIF import scheme.

• Current Status: Displays the overall status of the ADIF job execution:

• Started: The ADIF job is currently executed. The ADIF job is listed in the section Started
Job/s.

• Success: The ADIF job has been successfully executed.

• Warning: The ADIF job was executed, but a warning was written to the log file because a non-
critical function failed.

• Failed: The ADIF job has returned an error during execution.

• Job Session: The unique session ID of the ADIF job.

• Start Time: The time when the ADIF job execution started.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 201

• End Time: The time when the ADIF job execution finished.

• Executed By: The way the ADIF job execution was started. The column returns one of the following:

• Expand ADIF Debugger: The ADIF job was executed via the ADIF debugger of Alfabet
Expand for testing purposes.

• User Interface: The ADIF job execution was started from the Alfabet user interface via a
button interaction. This is also displayed for test job execution on this view via the Run Job >
Non-Persistent Test Job options.

• Rest API: The ADIF job was triggered via a RESTful service call to the Alfabet RESTful API.

• Meta-Model Update: The ADIF job was executed automatically during a meta-model update.

• Database Restore: The ADIF job was executed automatically during a database restore
from an Alfabet ADBZ file.

• User Name: The user name of the user that started the ADIF job. Please note the following about the
user starting the ADIF job:

• For ADIF jobs executed via a meta-model update or database restore that was started via the
Alfabet Administrator the user information is empty because a user login is not required for
the Alfabet Administrator.

• For ADIF jobs executed via a RESTful service call to the endpoints adifimport or
adifexport of the Alfabet RESTful API, the authentication user for the RESTful service call is
identical with the user executing the ADIF job. This applies to RESTful service calls from an
external RESTful client as well as for RESTful service calls triggered via events.

A filter is available to reduce the dataset to relevant content. Set the following filters fields on top of the
table and click Update to view only data matching your filter settings:

• ADIF Scheme Type: Select IMPORT to view ADIF import schemes and ADIF jobs for ADIF export
schemes only or EXPORT to view ADIF export schemes and ADIF jobs for ADIF export schemes only.

• ADIF Schemes: Select one or multiple ADIF schemes from the multi-select drop-down list to limit
the display to the selected ADIF schemes and the ADIF jobs executed for the schemes.

• ADIF Job State: Select one of the following:

• Started to view only currently running ADIF jobs.

• Success to view only successfully executed ADIF jobs.

• Warning to view only ADIF jobs executed with a warning message.

• Failed to view only ADIF jobs terminated with an error.

• Execution Forcefully Terminated to view only ADIF jobs that failed because the executing
Alfabet Server was shut down either planned or forcefully during execution or the server
thread for execution was forcefully terminated.

• Start Date After: Select a date from the calendar to view only ADIF jobs started at or after the
selected date.

• Start Date Before: Select a date from the calendar to view only ADIF jobs started at or before the
selected date.

To view the log information about an executed ADIF job:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 202

1) In the toolbar, click the Show Log button.

2) In the window that opens, click the Download button. The file is downloaded via the download
mechanisms of your browser.

The button Job Details is only applicable for ServiceNow® integration. It provides information
about the IDs of the log information returned by ServiceNow® that during execution of the ADIF
job in verbose mode. The log information is stored in a table ALFA_ADIF_SESSION_DETAIL in the
Alfabet database that is not visible on the Alfabet user interface or in Alfabet Expand. To see the
log information, you can built a simple configured report based on the following query and export
the information.

SELECT REFSTR,SESSION_ID,SCHEME_NAME,DETAIL_ID,IN_CONTENT,OUT_CONTENT

FROM ALFA_ADIF_SESSION_DETAIL

You can delete information about ADIF job execution if it is not required any longer to keep the information
stored in the underlying database table small and to enhance the clarity of information in the ADIF Jobs
Administration and My ADIF Jobs functionalities.

To delete ADIF job session information, select one or multiple ADIF job information in the table and click the

Delete button. The selected ADIF job session information is irrevocably deleted from the Alfabet data-
base.

Executing ADIF

You can start ADIF jobs configured as executable via the user interface in the ADIF Jobs Administration
functionality and not configured to require setting of mandatory parameters during execution.

ADIF jobs are executed asynchronously. They are queued for execution via an Alfabet Server. The execu-
tion might be delayed by other queued ADIF jobs. You can work on the Alfabet user interface in the current
session while the ADIF job is queued and executed. The job will not be listed in the table of the ADIF Jobs
Administration functionality while it is queued. It is listed in the section Started Job/s during execution
and in the section Executed Job/s when finished. The user triggering the execution will also be informed
about the success of the execution via an event feedback message.

To start execution of an ADIF job:

1) In the table, select the ADIF scheme that you would like to execute.

2) If the toolbar, click one of the following:

• Run Job Asynchronously via Server > Execute Import Job Asynchronously: The ADIF
import job will be executed asynchronously and only errors and warnings and the execution
start and end time will be written to the log file.

• Run Job Asynchronously via Server > Execute Import Job Asynchronously with Verbose
Logging: The ADIF import job will be executed asynchronously and detailed information will
be written to the log file during execution.

• Run Job Asynchronously via Server > Execute Export Job Asynchronously: The ADIF
export job will be executed asynchronously and only errors and warnings and the execution
start and end time will be written to the log file.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 203

• Run Job Asynchronously via Server > Execute Export Job Asynchronously with Verbose
Logging: The ADIF export job will be executed asynchronously and detailed information will
be written to the log file during execution.

If the button options are deactivated, the selected ADIF scheme is configured to be visi-
ble but not executable on the Alfabet user interface.

3) If you are executing an ADIF import scheme that imports data from file, a file selector window
opens. Select the file that includes the data for upload and click Upload.

4) If you are executing an ADIF export scheme that export data to a file, the export file is uploaded to
the Internal Document Selector and will be available via the Internal Documents functionality. A
dialog for selection of the allowed file locations in the Internal Document Selector opens. Select
the checkbox of the target folder in the list of folder in the IDOC Folder to Export table and
optionally specify a file name in the Export File Name field. The file name must have the
extension.zip. If you do not specify a file name, the execution will generate a ZIP file with the name
<NameOfADIFScheme>_<unformatted_timestamp>.zip.

Testing ADIF Scheme Execution

You can start all ADIF jobs configured as executable via the user interface in the ADIF Jobs Administra-
tion functionality in test mode. In test mode, information written to database tables is not persistent, but
changes are reverted as last action of the ADIF job execution. The consequences of import can be tested
via the log file without any risk to your data. For ADIF jobs exporting data to files, the test mode is not appli-
cable. Using the test options will create the exported file as in normal execution mode.

1) In the table, select the ADIF scheme that you would like to execute.

2) If the toolbar, click any of the following:

• Run Job Asynchronously via Server > Asynchronously Non-Persistent Import Test Job:
The ADIF import job will be executed asynchronously without persistently changing the data
in the database and only errors and warnings and the execution start and end time will be
written to the log file.

• Run Job Asynchronously via Server > Asynchronously Non-Persistent Import Test Job
with Verbose Logging: The ADIF import job will be executed asynchronously without
persistently changing the data in the database and detailed information will be written to the
log file during execution.

• Run Job Asynchronously via Server > Asynchronously Non-Persistent Export Test Job:
The ADIF import job will be executed asynchronously without persistently changing the data
in the database and only errors and warnings and the execution start and end time will be
written to the log file.

• Run Job Asynchronously via Server > Asynchronously Non-Persistent Export Test Job
with Verbose Logging: The ADIF import job will be executed asynchronously without
persistently changing the data in the database and detailed information will be written to the
log file during execution.

3) If you are testing execution of an ADIF import scheme that imports data from file, a file selector
window opens. Select the file that includes the data for upload and click Upload.

4) If you are executing an ADIF export scheme that export data to a file, the test mode will make no
difference to the normal execution mode.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 204

• The results are written into a persistent file. The export file is uploaded to the Internal
Document Selector and will be available via the Internal Documents functionality. A dialog
for selection of the allowed file locations in the Internal Document Selector opens. Select
the checkbox of the target folder in the list of folder in the IDOC Folder to Export table and
optionally specify a file name in the Export File Name field. The file name must have the
extension.zip. If you do not specify a file name, the execution will generate a ZIP file with the
name <NameOfADIFScheme>_<unformatted_timestamp>.zip.

Scheduling ADIF Jobs for Execution at a Defined Time With the Job
Schedule Functionality

The functionality Job Schedule (JobSchedule) can be made available on the Alfabet user interface for
administrative users. With this functionality, users can schedule ADIF jobs for either one time execution at a
defined date and time or recurrent execution at defined times and intervals for a defined period of time.

In addition, the Job Schedule functionality can be used to batch delete old delete ADIF session information
from the ADIF_SESSION table in the Alfabet database to reduce the size of the database and to enhance
the clarity of information in the ADIF Jobs Administration and My ADIF Jobs functionalities.

The job scheduler requires a running Alfabet Server to be connected to the same database than the Alfabet
Web Application providing the job scheduler on the user interface.

When a user creates a job schedule, the information about the scheduling is stored as an object of the ob-
ject class Alfabet job schedule and a wakeup event is stored for the next time the job shall be executed.

The Alfabet Server scans the scheduled events in regular intervals for scheduled jobs that are due to be
executed. If a job is due, the Alfabet Server puts the job into the queue of jobs to be executed.

The functionality must first be activated via configuration in Alfabet Expand.

The following information is available:

• Preconditions for Using the Job Scheduler

• Creating Categories for the Job Schedule Use Case

• Configuring the ADIF Scheme to be Executable via the Job Schedule Functionality

• Configuring Access Permissions to Folders in the Internal Document Selector for the Job
Schedule

• Configuring a User to Execute Self-Reflective Events

• Changing the Interval for Checking the Queues of Scheduled Events and ADIF Jobs

• Scheduling ADIF Jobs via the Job Scheduler Functionality

• Creating a Job Schedule for ADIF Export

• Creating a Job Schedule for ADIF Import

• Creating a Job Schedule for Batch Deletion of Old ADIF Session Information

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 205

Preconditions for Using the Job Scheduler

In addition to the configuration described in this section, the following preconditions apply:

• The job scheduler requires a running Alfabet Server to be connected to the same database as the
Alfabet Web Application providing the Job Schedule functionality on the user interface.

• The RESTful services of the Alfabet Web Application must be activated and configured as described
in the chapter Activating the Alfabet RESTful API on Server Side of the reference manual Alfabet
RESTful API. The server alias of the Alfabet Web Application must grant Has ADIFAPIInvocation
Access to start ADIF jobs via the Job Schedule functionality.

The following configurations are relevant for activating and configuring the job scheduler:

• Creating Categories for the Job Schedule Use Case

• Configuring the ADIF Scheme to be Executable via the Job Schedule Functionality

• Configuring Access Permissions to Folders in the Internal Document Selector for the Job Schedule

• Configuring a User to Execute Self-Reflective Events

• Changing the Interval for Checking the Queues of Scheduled Events and ADIF Jobs

Creating Categories for the Job Schedule Use Case

ADIF schemes can only be scheduled via the Job Schedule functionality if they are assigned to a category

defined for the functionality in the XML object UseCaseCategories.

To set the categories for the Job Schedule functionality in the XML object UseCaseCategories:

1) In the Presentation tab of Alfabet Expand, expand the explorer node XML Objects.

2) Right-click on the XML object UseCaseCategories in the explorer and select Edit XML from the

context menu. The XML object opens in the middle pane.

3) Enter the following code as child element of the XML element UseCaseCategories:

<UseCaseInfo UseCase="JobScheduler">

<ScopeInfo Scope="ADIF" Categories="CommaSeparatedListOfCategories" />

</UseCaseInfo>

The XML attribute Categories must be set to either one category name or a comma separated list
of category names. Please note that a category name is a technical name and should not contain
special characters or whitespaces. All category names that are defined can be used in the Cate-
gory attribute of an ADIF scheme to activate scheduling for the ADIF scheme.

Private ADIF schemes are delivered with Alfabet to trigger for example automated translation or
import or export in the scope of an integration interface. If you would like to schedule execution of
these private ADIF schemes, the list of categories must include the respective category that is
preset for the ADIF scheme. The following category names are set for private ADIF schemes:

• Translation for all ADIF jobs for batch processing associated with automated translation.

• Technopedia for the ADIF import scheme ALFABET_TECHNOPEDIA_UPDATE.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 206

• CentraSite for all ADIF jobs that are associated with CentraSite.

• APIGateway for the ADIF import scheme Alfabet_APIGateway_Synchronization.

• Apigee for the ADIF import scheme Alfabet_Apigee_Synchronization.

• APIPortal for the ADIF import scheme Alfabet_APIPortal_Synchronization.

4) In the toolbar, click the Save button.

Configuring the ADIF Scheme to be Executable via the Job Schedule Functionality

The ADIF Job must meet the following preconditions to be scheduled via the Job Schedule functionality:

• It must be assigned to one of the categories defined for the use case JobScheduler and the scope

ADIF in the XML object UseCaseCategories.

For information about defining category names in the XML object UseCaseCatego-
ries, see Creating Categories for the Job Schedule Use Case.

• The ADIF scheme must not include parameters defined in compatibility mode or with the data type
StringArray or ReferenceArray.

To activate job scheduling for an ADIF import scheme:

1) In the ADIF tab of Alfabet Expand, click the ADIF scheme.

2) In the attribute window, select one of the categories defined for the use case JobScheduler and

the scope ADIF in the XML object UseCaseCategories.

Configuring Access Permissions to Folders in the Internal Document Selector for the Job Schedule

ADIF import scheduled via the job scheduler can be performed from a file located in the Internal Docu-
ment Selector of the Alfabet database. This method is optional. Import can also be performed from a file
on the local file system. ADIF export to file via the job scheduler can exclusively target the Internal Docu-
ment Selector. Export of data to the local file system is not available for scheduled jobs.

The job scheduler can only access folders of the Internal Document Selector with explicit access permis-
sions for the job scheduler.

To define the IDOC folders that are accessible via scheduled ADIF jobs:

1) In the Presentation tab of Alfabet Expand, expand the explorer node XML Objects >
Administration.

2) Right-click on the XML object IDocManagerConfiguration in the explorer and select Edit XML

from the context menu. The XML object opens in the middle pane.

3) Enter the following code:

<IDocManager>

<UseCase Name="JobSchedule" >

<Folder Name="FolderShowName" Path="IDOC:\Path" />

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 207

</UseCase>

</IDocManager>

The XML element UseCase can have multiple child elements Folder, each defining one folder that
shall be accessible via the job scheduler. Define the folder with the following XML attributes of the
XML element Folder:

• Name: Define a caption that shall be displayed for the folder in the editor for scheduling ADIF
jobs. The name does not have to be identical to the name of the folder in the Internal
Document Selector.

• Path: Define the path to the folder in the Internal Document Selector. The path must start
with IDOC:\ and end with the name of the selected folder. Backslashes must be used
between folder names. The job scheduler can read and write in the defined folder and all
subordinate folders of the defined folder.

4) In the toolbar, click the Save button.

Configuring a User to Execute Self-Reflective Events

The user selected for execution of events of the type SelfReflective will be used for authentication of
RESTful service calls to the RESTful API of the Alfabet Web Application for both wakeup events involved in
job scheduling and for all other event based activities that involve execution via the RESTful API.

For more information about triggering actions via event templates, see the chapter Configuring
Events.

It is recommended to create a user that is exclusively used for executing events via the RESTful services.
The user can be excluded from access to any objects except for executing job schedules, asynchronously
starting ADIF jobs via the user interface, and start of workflows, RESTful service calls and/or execution of
ADIF jobs via events based on event templates, but it is also possible to use an existing user.

The user must be a named user with at least one user profile assigned. The user profile is not used for eval-
uation of access permissions. A ReadOnly user profile is sufficient to execute the RESTful services in the
context of events.

Only one user can be selected for execution of events of the type SelfReflective. If you assign this
functionality to a user while another user has already been selected to execute self-reflective events, the
setting is removed from that user when it is set for the user you are currently assigning it to. Therefore, if a
user has already been defined in the context of the activation of any other functionality, you should add
the required access permissions described below to this user instead of creating another user to make sure
that the permissions for the functionality the user was created for is maintained.

To create a user for execution of self-reflective events in the User Administration functionality on the
Alfabet user interface:

The same functionality is also available via the Alfabet Administrator. For information about ac-
cessing the user management functionalities of the Alfabet Administrator see Functionalities
Available via the Expanded Explorer of the Connected Alias in the reference manual System Ad-
ministration.

1) In the toolbar of the User Administration view, select New > Create New User. An editor opens.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 208

2) In the editor, define the following:

Basic Data tab:

• Name: Enter a meaningful name for the user. The user is a technical user. You can either
assign the name of an existing person to it or give it a name that indicates that this is a virtual
person defined to execute a functionality.

• User Name: Enter a user name. The user name is used by the RESTful services to identify the
user.

• Type : Select NamedUser.

API Permissions tab:

• Has API V2 Access: Select the checkbox.

• API Access Options: Make sure that the following permission are selected:

• Has ADIFAPIInvocation Access for the execution of ADIF schemes via the ADIF
Import Job Schedule and the ADIF Export Job Schedule.

• Has Batch Utilities API Access for the execution of all other job schedules.

• Generate API Password : Click the button. The API Password field is filled. For events of the
type Query, copy the API User Name and the API Password. These have to be entered into
the specification in the XML object AlfabetIntegrationConfig described below in the
section Configuring the Connection Parameters in the XML Object AlfabetIntegrationConfig.

3) Click OK to close the editor. The new user is added to the table in the User Administration view.

4) Select the user in the table and select Action > Set as Executes Self-Reflective Events User in
the toolbar.

5) Select the user in the table and click the Navigate button.

6) In the object profile of the user, click Assigned User Profiles.

7) In the toolbar of the Assigned User Profiles view, click New > Assign User Profiles.

8) In the selector, select a user profile and click OK to assign it to the user. For a user that is
exclusively used for events, it is recommended to use a ReadOnly user profile.

The configuration described above is the configuration required for the Job Schedule functionality only. In
addition, you can set any other properties of the user. For security reasons you might also consider to as-
sign a login password to the user although the user password is not required for the Job Schedule func-
tionality. For information about the available configuration options for users, see Defining and Managing
Users in the reference manual User and Solution Administration.

Changing the Interval for Checking the Queues of Scheduled Events and ADIF Jobs

This configuration is optional. The default interval of the Alfabet Server for checking the wakeup events
created for execution of job schedules for ADIF jobs due for execution is 500 milliseconds and the default
interval of the Alfabet Server for checking the ADIF jobs queue and execute the next ADIF job is 3000 milli-
seconds. Optionally, you can adapt these values to your demands.

The configuration has to be performed in the tool Alfabet Administrator:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 209

1) In the explorer of the Alfabet Administrator, click the Alfabet Aliases node.

2) In the table, select the server alias configuration that is used for starting the Alfabet Server.

3) In the toolbar, click the Edit button. The server alias editor opens.

4) Go to the Server Settings > General tab and edit the following attributes:

• ADIF Job Server Sleep Time (milliseconds): Enter the time between checking of the queue
of ADIF jobs to be executed.

• Event Server Sleep Time (milliseconds): Enter the time between checking the event queue
for scheduled wakeup events to be executed.

5) Click OK to save your changes.

Scheduling ADIF Jobs via the Job Scheduler Functionality

ADIF jobs are scheduled in the Job Schedule functionality.

The functionality lists all job schedules that have been defined. The table is an expandable dataset with 6
levels.

• The first level is the grouping level for the job schedule stereotype. There is one group for each job
schedule stereotype. Currently, the following job schedule stereotypes are available:

• ADIF Export Job Schedule for execution of ADIF export.

• ADIF Import Job Schedule for execution of ADIF import.

• Rescan Indicator Job Schedule to re-compute all automatically computed indicators.

• Rescan Color Rule Job Schedule to update coloring based on color rules for new and
changed objects.

• Full Text Search Utility Job Schedule to update the full text search index to current
changes in the Alfabet database.

• Alfa Batch Executor Job Schedule for creating assignments and/or sending automatic
email notifications to an object’s authorized user if a monitor is triggered, an assignment
approaches or reaches a defined due date, or an organizational or process change has
occurred that affects an object.

• Alfa Workflow Job Schedule for starting workflows configured to be started automatically,
for closing workflow steps configured to be closed automatically, for automatic deletion of
finished workflows, and for rescanning and updating roles and responsibilities for workflows
and workflow steps.

• Publication Job Schedule for publishing data based on a configured publication.

• Clear ADIF Session Content Job Schedule for removing old entries from the ADIF_SESSION
table.

• The second level displays all defined job schedules that belong to the job schedule stereotype.

• The third level is the grouping level for all events of the job schedule.

• The fourth level displays each execution of a job with the job schedule execution status.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 210

• The fifth level is the grouping level for the job run status.

• The sixth level displays the job schedule execution status and provides the ability to open a log file
returned from the executed ADIF scheme.

The table provides the following information about the execution of the job schedules:

• Type: The column displays the job schedule stereotype as group level for all stereotypes for that job
schedules are available. The Type column displays Events as group level for all events of a job
schedule. The Type column displays Job Run Status for the group level of the job target execution
status.

• Job Schedule Name: The name of the job schedule. The name is defined by the user that creates
the job schedule.

• Stereotype: The stereotype of the job schedule.

• Next Run Time: The time the job triggered by the job schedule will be executed because of this
event.

• Event Status: The status of the event. The status can be one of the following:

• Pending: The job is scheduled for execution at a later point of time.

• Executing: The job is currently executed.

• Finished: Job execution has been success. If an event has the status Finished, the
scheduling of the job was finished successfully, and a Job Run Status section is added as
subordinate information level. The execution status in the Job Run Status section should
then be checked to see whether execution of the scheduled functionality has been
successful, too.

• Error: An error related to scheduling of the job or triggering of the functionality to be
executed has occurred.

• Execution Error: An error has occurred during execution of the functionality.

• Occurrence Time: The time when the job event was scheduled. A job event is scheduled directly
after creation of the job schedule for the first execution. For recurrent schedules, new event is
scheduled for the next execution as soon as the first execution is done.

• Execution Time: The time when the execution of the job triggered by the event was started.

• Completion Time: The time when the execution of the job triggered by the event has finished.

A filter is available on top of the table to search for specific events in the table:

• Stereotype: Select a job schedule stereotype to view only job schedules that belong to the selected
stereotype.

• Name: Enter the name of a job schedule to view only events for the selected job schedule.

• Job Schedule Event Status: Select a job schedule status to view only events that are currently in
the selected status. Please note that this filter is only applied to the event status of the scheduling
events listed in the Events sections.

• Execution After: Enter a date to view only job schedule events executed at or after the selected
date.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 211

• Execution Before: Enter a date to view only job schedule events executed at or before the selected
date.

You can do one of the following for existing job schedules.

• To view the log file of a job executed via an event, click the job run status in the table and click Show
Log in the toolbar.

• To cancel a pending event, select the event in the table and click New > Cancel Planned Job.

• To cancel all pending events for a job schedule, select the job schedule in the table and click New >
Cancel All Planned Jobs.

• After having cancelled pending events, you should select the job schedule in the table and click New
> Resume Job Schedule to resume the execution.

• To schedule an event for immediate execution of the job independent from the defined execution
time-table for the job schedule, select the job schedule in the table and click New > Execute Job
Schedule in the toolbar. This option can be used to do one of the following:

• If a job schedule has reached the end date of its execution cycle or has been configured to
trigger a single execution, the ADIF job or batch job triggered by the job schedule can be
scheduled for immediate execution using the Execute Job Schedule option.

• If pending events for a job schedule were cancelled, the Execute Job Schedule option can
be used instead of the Resume Job Schedule option to resume the execution. While the
Resume Job Schedule option will resume the execution at the next scheduled execution
date, the Execute Job Schedule option will execute the job immediately independent from
the configured execution times in the job schedule and at the same time create an event for
the execution at the next scheduled execution date.

• To delete a job schedule, select the job schedule in the table and click the Delete button in the
toolbar.

• To change a job schedule, select the job schedule in the table and click the Edit button in the
toolbar.

If you change a job schedule with a pending event, the pending event will be canceled
and a new event will be scheduled that contains the changes you made in the editor.

• To create a new job schedule on basis of the data of an existing job schedule, select the job schedule
that shall be used as template in the table and click New > Create Job Schedule as Copy in the
toolbar.

To create a job schedule, do one of the following:

• Creating a Job Schedule for ADIF Export

• Creating a Job Schedule for ADIF Import

Creating a Job Schedule for ADIF Export

Please note that files resulting from scheduled ADIF export can only be exported to the Internal Docu-
ment Selector of the Alfabet database. They can be downloaded from the Internal Document Selector in

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 212

the Internal Documents functionality or via a RESTful service call to the idocdownload end point of the
Alfabet RESTful services.

To schedule an ADIF export job:

1) In the toolbar, click New > Create Schedule.

2) In the Stereotype Selector that opens, select ADIF Export Job Schedule.

3) In the editor, define the following attributes:

Basic Data tab:

• Name: Define a name for the job schedule. The job schedule will be listed in the table of the
Job Schedule functionality with this name. The name must be unique. It is not possible to
define two job schedules with the same name, even if the type of job schedule is different.
This attribute is mandatory.

• Description: Provide a meaningful description about the purpose of the job schedule.

• Verbose Logging: Select the checkbox if additional information about the running process
shall be logged. Verbose logging is in most cases not required and can lead to a decrease in
performance. The default setting for this attribute is False.

• ADIF Export Scheme: Select the ADIF export scheme that shall be executed via the job
schedule from the drop-down list.

Only ADIF schemes that are assigned to a job schedule category can be executed
via the Job Schedule functionality. For more information see Configuration Re-
quired for Scheduling ADIF Jobs in the reference manual Configuring Alfabet with
Alfabet Expand.

• Parameters: If the selected ADIF export scheme includes parameter definitions, the attribute
displays a table that informs about the name, type and default value for the defined
parameters and whether the parameters are mandatory. Enter a parameter value at least for
all parameters not having a default defined into the fields in the column Parameter Value.
Note the following about the definition of parameter values:

• Parameter values for data types like string or date are defined without single quotes at
the beginning and end. If single quotes are required in the query for the data type, they
will be automatically added by the ADIF mechanisms.

• For the definition of dates enter the date in the Value field in the format defined in the
culture setting of the language you are currently using to render the Alfabet user
interface.

• String array values must be separated with \r\n.

• % can be used as wildcard in strings and texts. It is not allowed to define a wildcard in a
value of a string array.

• The definition of values for string arrays and reference arrays is currently not
supported.

Schedule tab:

• Schedule Time: Enter the start time for the job execution into the Start Time field.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 213

• Recurrence Pattern: Select one of the following check boxes and provide additional data, if
applicable:

• Daily: The interval between job executions is the number of days specified in the field
day(s) as an integer.

• Weekly: The interval between job executions is the number of weeks specified in the
field week(s) on as an integer. In addition, select the checkbox of the day of the week
that the job shall be executed for each recurrence.

• Monthly: There are tow methods to select from. If you select the checkbox Date-
Based, define a day of the month in the day field behind the checkbox. For example if
you want the job to be executed on the fifteenth of each month, enter 15. If you select
the checkbox Weekday-Based, you can schedule the job for a specific day of a
specific week in the month. In the first field behind the checkbox, select the week of
the month the job shall be executed. In the second field behind the checkbox, select
the day of the week the job shall be executed. The interval between job executions is
the number of weeks specified in the field month(s) field of the selected scheduling
method.

• Once: The job is only executed once.

• Range of Recurrence: This definition is mandatory. Select the start date for the job schedule
from the calendar in the Start Date field. For the definition of the end of the recurrence
period, either select End after: and define the maximum number of occurrences in the
Occurrences field or select End by: and select the end date for the job scheduling from the
calender in the field next to the checkbox entry. If you have selected Once in the Recurrence
Pattern field, only define the date of execution via the Start Date field.

File Info tab: This tab is only relevant for export to file.

• File Name Base: Enter the file name without extension for the ZIP file that shall contain the
exported data. If you do not define the name, the file name will be the name of the executed
ADIF export scheme in capital letters.

• File Suffix: Select from the drop-down list whether and how the File Name Base shall be
complemented with a unique marker on export. This setting is relevant for regular exports
that should each generate a file without overwriting the previously exported files. The file
name can either be complemented with a timestamp or with a unique GUID.

• IDOC Folder to Export: Select the checkbox on the right of the folder in the Internal
Document Selector the file shall be stored in. The list does not display the complete
structure of the Internal Document Selector but only the folders defined to be used for job
scheduling. The file names displayed in the IDOC Folder to Export field can deviate from file
names in the Internal Document Selector, because a show name can be configured for the
folders in Alfabet Expand.

For more information, see Configuring Access Permissions to Folders in the Internal
Document Selector for the Job Schedule in the reference manual Configuring
Alfabet with Alfabet Expand.

If no folder is selected, the file is saved in a folder ADIF_SYS on the root level of the Internal Document
Selector.

Execution Info tab:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 214

This tab provides the ability to adapt the job scheduling to environmental conditions, like for exam-
ple the scheduling of other jobs or maintenance windows during which execution shall be post-
poned.

• Maximum Wait Time [min]: Enter a maximum time in minutes that the job execution can be
postponed if one of the following applies:

• The execution of jobs for the current job schedule depends on the execution of one or
multiple other jobs to be finished because the execution result of one job is required to
be available to execute this job or because both jobs perform conflicting actions. If a
job of the current schedule shall be executed while a job defined in the Dependent
Jobs field is still running, the job will not be executed but re-scheduled for execution
five minutes later until the dependent jobs are finished.

• A job for the current job schedule cannot be executed because the current execution
time lies within a maintenance window. Maintenance windows are time periods that are
blocked to avoid interruption of the job by maintenance work. If a job is due within a
maintenance window period, the job will not be executed immediately. It will be re-
scheduled for execution one minute after the end of the maintenance window.

Maintenance windows must have been configured for the Alfabet components
in order to adapt job scheduling to the maintenance window via the Maximum
Wait Time [min] setting. For information about the definition of maintenance
windows, see Defining Maintenance Windows in the reference manual Configur-
ing Alfabet with Alfabet Expand or Defining Maintenance Windows for Sched-
uled Jobs in the reference manual System Administration.

If the time between the originally due job execution and the end of the maintenance window or the end of
execution of a dependent job exceeds the maximum wait time, job execution will be cancelled, and an error
message is written into the log file. The next execution of the job is scheduled according to the settings in
the Schedule tab of the job schedule editor.

• Dependent Jobs: If the execution of jobs for the current job schedule shall be postponed if
another job is still running, click New > Create New Job Dependency. Select the job schedule
the current job schedule depends on in the list and click OK. If a job is running for one of the
dependent job schedules, the execution of the job for the current job schedule will be shifted
to the scheduled time plus minutes until the execution of all dependent jobs is finished. If the
maximum wait time defined with Maximum Wait Time [min] is exceeded while dependent
jobs are still running, the execution of the current job is cancelled and the next execution
scheduled according to the settings in the Schedule tab of the job schedule editor.

• Expected Execution Time [min]: If a maximum time for execution of the job is defined in
minutes in this field, a warning is written into the log file available via the Show Log button if
the execution of a job for the current schedule exceeds the maximum wait time. The job is
nevertheless further executed.

• Executing User: Each time a scheduled job has been executed, the user that owns the job
schedule will see a slide-in Event Feedback message window informing him/her whether the
current execution was successful. If a result is available for download, a download link is
displayed. By default, the slide-in message will be displayed to the user that created the job
schedule when he/she is logged in with the same user profile as on creation of the job
schedule. This default behaviour can be changed. Select a user from the drop-down list to
show the Event Feedback message to that user instead. Please note that the selected user
must be logged in with the user profile defined in the Executing User Profile attribute to
receive the Event Feedback messages for this job schedule.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 215

• Executing User Profile: The user profile that the user defined with the Executing User
attribute must be logged in with to receive Event Feedback messages for execution of this
job schedule. By default, message will be displayed to the user that created the job schedule
when he/she is logged in with the same user profile as on creation of the job schedule. This
attribute is mandatory if Executing User is defined.

4) Click OK to save your changes.

After having created the job schedule, you can use it as a template for creating new job schedules. Select
the job schedule in the table and click New > Create Job Schedule As Copy from the toolbar.

Creating a Job Schedule for ADIF Import

For ADIF import from file, the files can either be located on the local file system in a folder accessible for the
Alfabet components or in the Internal Document Selector of Alfabet.

To schedule an ADIF import job:

1) In the toolbar, click New > Create Schedule.

2) In the Stereotype Selector that opens, select ADIF Import Job Schedule.

3) In the editor, define the following attributes:

Basic Data tab:

• Name: Define a name for the job schedule. The job schedule will be listed in the table of the
Job Schedule functionality with this name. The name must be unique. It is not possible to
define two job schedules with the same name, even if the type of job schedule is different.
This attribute is mandatory.

• Description: Provide a meaningful description about the purpose of the job schedule.

• Verbose Logging: Select the checkbox if additional information about the running process
shall be logged. Verbose logging is in most cases not required and can lead to a decrease in
performance. The default setting for this attribute is False.

• Import Scheme: Select the ADIF import scheme that shall be executed via the job schedule
from the drop-down list.

Only ADIF schemes that are assigned to a job schedule category can be executed
via the Job Schedule functionality. For more information see Configuration Re-
quired for Scheduling ADIF Jobs in the reference manual Configuring Alfabet with
Alfabet Expand.

• Parameters: If the selected ADIF import scheme includes parameter definitions, the attribute
displays a table that informs about the name, type and default value for the defined
parameters and whether the parameters are mandatory. Enter a parameter value at least for
all parameters not having a default defined into the fields in the column Parameter Value.
Note the following about the definition of parameter values:

• Parameter values for data types like string or date are defined without single quotes at
the beginning and end. If single quotes are required in the query for the data type, they
will be automatically added by the ADIF mechanisms.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 216

• For the definition of dates enter the date into the Value field in the format defined in
the culture setting of the language you are currently using to render the Alfabet user
interface.

• String array values must be separated with \r\n.

• % can be used as wildcard in strings and texts. It is not allowed to define a wildcard in a
value of a string array.

• The definition of values for reference arrays is currently not supported.

Schedule tab:

• Schedule Time: Enter the start time for the job execution into the Start Time field.

• Recurrence Pattern: Select one of the following check boxes and provide additional data, if
applicable:

• Daily: The interval between job executions is the number of days specified in the field
day(s) as an integer.

• Weekly: The interval between job executions is the number of weeks specified in the
field week(s) on as an integer. In addition, select the checkbox of the day of the week
that the job shall be executed for each recurrence.

• Monthly: There are two methods to select from. If you select the checkbox Date-
Based, define a day of the month in the day field behind the checkbox. For example, if
you want the job to be executed on the fifteenth of each month, enter 15. If you select
the checkbox Weekday-Based, you can schedule the job for a specific day of a
specific week in the month. In the first field behind the checkbox, select the week of
the month the job shall be executed. In the second field behind the checkbox, select
the day of the week the job shall be executed. The interval between job executions is
the number of weeks specified in the field month(s) field of the selected scheduling
method.

• Once: The job is only executed once.

• Range of Recurrence: This definition is mandatory. Select the start date for the job schedule
from the calendar in the Start Date field. For the definition of the end of the recurrence
period, either select End after: and define the maximum number of occurrences in the
Occurrences field or select End by: and select the end date for the job scheduling from the
calender in the field next to the checkbox entry. If you have selected Once in the Recurrence
Pattern field, only define the date of execution via the Start Date field.

File Info tab: this tab is only relevant for import from file.

• File Location: Select where the import ZIP file is located.

• System File: The file is available on the local file system.

• System Folder: The file is available in a defined folder. The latest file in the folder will
be used to perform the import.

• IDOC File: The file is available on the local file system.

• IDOC Folder: The file is available in a defined folder of the Internal Document Selector.
The latest file in the folder will be used to perform the import.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 217

• System File/Folder Path: If the File Location is System File, enter the absolute path and
name of the file to be imported. If the File Location is System Folder, enter the absolute
path to the folder containing the import file.

• Internal Documents: If the File Location is IDOC File, select the checkbox behind the file in
the internal document selector that contains the data to be imported. The file type must be
ZIP. If the File Location is IDOC Folder, select the checkbox behind the folder that will
contain the import file.

Execution Info tab:

This tab provides the ability to adapt the job scheduling to environmental conditions, like for exam-
ple the scheduling of other jobs or maintenance windows during which execution shall be post-
poned.

• Maximum Wait Time [min]: Enter a maximum time in minutes that the job execution can be
postponed if one of the following applies:

• The execution of jobs for the current job schedule depends on the execution of one or
multiple other jobs to be finished because the execution result of one job is required to
be available to execute this job or because both jobs perform conflicting actions. If a
job of the current schedule shall be executed while a job defined in the Dependent
Jobs field is still running, the job will not be executed but re-scheduled for execution
five minutes later until the dependent jobs are finished.

• A job for the current job schedule cannot be executed because the current execution
time lies within a maintenance window. Maintenance windows are time periods that are
blocked to avoid interruption of the job by maintenance work. If a job is due within a
maintenance window period, the job will not be executed immediately. It will be re-
scheduled for execution one minute after the end of the maintenance window.

Maintenance windows must have been configured for the Alfabet components
in order to adapt job scheduling to the maintenance window via the Maximum
Wait Time [min] setting. For information about the definition of maintenance
windows, see Defining Maintenance Windows in the reference manual Configur-
ing Alfabet with Alfabet Expand or Defining Maintenance Windows for Sched-
uled Jobs in the reference manual System Administration.

If the time between the originally due job execution and the end of the maintenance window or the end of
execution of a dependent job exceeds the maximum wait time, job execution will be cancelled and an error
message is written into the log file. The next execution of the job is scheduled according to the settings in
the Schedule tab of the job schedule editor.

• Dependent Jobs: If the execution of jobs for the current job schedule shall be postponed if
another job is still running, click New > Create New Job Dependency. Select the job schedule
the current job schedule depends on in the list and click OK. If a job is running for one of the
dependent job schedules, the execution of the job for the current job schedule will be shifted
to the scheduled time plus minutes until the execution of all dependent jobs is finished. If the
maximum wait time defined with Maximum Wait Time [min] is exceeded while dependent
jobs are still running, the execution of the current job is cancelled and the next execution
scheduled according to the settings in the Schedule tab of the job schedule editor.

• Expected Execution Time [min]: If a maximum time for execution of the job is defined in
minutes in this field, a warning is written into the log file available via the Show Log button if
the execution of a job for the current schedule exceeds the maximum wait time. The job is
nevertheless further executed.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 218

• Executing User: Each time a scheduled job has been executed, the user that owns the job
schedule will see a slide-in Event Feedback message window informing him/her whether the
current execution was successful. If a result is available for download, a download link is
displayed. By default, the slide-in message will be displayed to the user that created the job
schedule when he/she is logged in with the same user profile as on creation of the job
schedule. This default behaviour can be changed. Select a user from the drop-down list to
show the Event Feedback message to that user instead. Please note that the selected user
must be logged in with the user profile defined in the Executing User Profile attribute to
receive the Event Feedback messages for this job schedule.

• Executing User Profile: The user profile that the user defined with the Executing User
attribute must be logged in with to receive Event Feedback messages for execution of this
job schedule. By default, message will be displayed to the user that created the job schedule
when he/she is logged in with the same user profile as on creation of the job schedule. This
attribute is mandatory if Executing User is defined.

4) Click OK to save your changes.

After having created the job schedule, you can use it as a template for creating new job schedules. Select
the job schedule in the table and click New > Create Job Schedule As Copy from the toolbar.

Creating a Job Schedule for Batch Deletion of Old ADIF Session In-
formation

ADIF session information older than a defined number of days can be batch deleted for a defined ADIF
scheme via a job schedule. The information about job execution can either be deleted completely or dele-
tion can be limited to the log file content while the information that the job was executed and the resulting
execution state is retained.

To schedule a job for deletion of ADIF session information:

1) In the toolbar, click New > Create Schedule.

2) In the Stereotype Selector that opens, select Clear ADIF Session Content Job Schedule.

3) In the editor, define the following attributes:

Basic Data tab:

• Name: Define a name for the job schedule. The job schedule will be listed in the table of the
Job Schedule functionality with this name. The name must be unique. It is not possible to
define two job schedules with the same name, even if the type of job schedule is different.
This attribute is mandatory.

• Description: Provide a meaningful description about the purpose of the job schedule.

• ADIF Scheme: Select the ADIF scheme for which job execution information shall be deleted
from the Alfabet database. If no ADIF scheme is selected, the job execution information will
be deleted for all ADIF schemes.

• Number of Days: The number of days for that job execution information shall be retained.
The number of days must be a positive integer. If you enter 1, information about job execution
for the current date and the day before the current date is retained. If you enter 0, all
information including the information of job execution on the current date is removed.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 219

• Level: Select Log to remove only the log file content stored in the database while the
information about the job execution date and the execution state is retained. Select All to
remove all information about the job execution.

Schedule tab:

• Schedule Time: Enter the start time for the job execution into the Start Time field.

• Recurrence Pattern: Select one of the following check boxes and provide additional data, if
applicable:

• Daily: The interval between job executions is the number of days specified in the field
day(s) as an integer.

• Weekly: The interval between job executions is the number of weeks specified in the
field week(s) on as an integer. In addition, select the checkbox of the day of the week
that the job shall be executed for each recurrence.

• Monthly: There are tow methods to select from. If you select the checkbox Date-
Based, define a day of the month in the day field behind the checkbox. For example if
you want the job to be executed on the fifteenth of each month, enter 15. If you select
the checkbox Weekday-Based, you can schedule the job for a specific day of a
specific week in the month. In the first field behind the checkbox, select the week of
the month the job shall be executed. In the second field behind the checkbox, select
the day of the week the job shall be executed. The interval between job executions is
the number of weeks specified in the field month(s) field of the selected scheduling
method.

• Once: The job is only executed once.

• Range of Recurrence: This definition is mandatory. Select the start date for the job schedule
from the calendar in the Start Date field. For the definition of the end of the recurrence
period, either select End after: and define the maximum number of occurrences in the
Occurrences field or select End by: and select the end date for the job scheduling from the
calendar in the field next to the checkbox entry. If you have selected Once in the Recurrence
Pattern field, only define the date of execution via the Start Date field.

Execution Info tab:

This tab provides the ability to adapt the job scheduling to environmental conditions, like for exam-
ple the scheduling of other jobs or maintenance windows during which execution shall be post-
poned.

• Maximum Wait Time [min]: Enter a maximum time in minutes that the job execution can be
postponed if one of the following applies:

• The execution of jobs for the current job schedule depends on the execution of one or
multiple other jobs to be finished because the execution result of one job is required to
be available to execute this job or because both jobs perform conflicting actions. If a
job of the current schedule shall be executed while a job defined in the Dependent
Jobs field is still running, the job will not be executed but re-scheduled for execution
five minutes later until the dependent jobs are finished.

• A job for the current job schedule cannot be executed because the current execution
time lies within a maintenance window. Maintenance windows are time periods that are
blocked to avoid interruption of the job by maintenance work. If a job is due within a

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 220

maintenance window period, the job will not be executed immediately. It will be re-
scheduled for execution one minute after the end of the maintenance window.

Maintenance windows must have been configured for the Alfabet components
in order to adapt job scheduling to the maintenance window via the Maximum
Wait Time [min] setting. For information about the definition of maintenance
windows, see Defining Maintenance Windows in the reference manual Configur-
ing Alfabet with Alfabet Expand or Defining Maintenance Windows for Sched-
uled Jobs in the reference manual System Administration.

If the time between the originally due job execution and the end of the maintenance window or the end of
execution of a dependent job exceeds the maximum wait time, job execution will be cancelled and an error
message is written into the log file. The next execution of the job is scheduled according to the settings in
the Schedule tab of the job schedule editor.

• Dependent Jobs: If the execution of jobs for the current job schedule shall be postponed if
another job is still running, click New > Create New Job Dependency. Select the job schedule
the current job schedule depends on in the list and click OK. If a job is running for one of the
dependent job schedules, the execution of the job for the current job schedule will be shifted
to the scheduled time plus minutes until the execution of all dependent jobs is finished. If the
maximum wait time defined with Maximum Wait Time [min] is exceeded while dependent
jobs are still running, the execution of the current job is cancelled and the next execution
scheduled according to the settings in the Schedule tab of the job schedule editor.

• Expected Execution Time [min]: If a maximum time for execution of the job is defined in
minutes in this field, a warning is written into the log file available via the Show Log button if
the execution of a job for the current schedule exceeds the maximum wait time. The job is
nevertheless further executed.

• Executing User: Each time a scheduled job has been executed, the user that owns the job
schedule will see a slide-in Event Feedback message window informing him/her whether the
current execution was successful. If a result is available for download, a download link is
displayed. By default, the slide-in message will be displayed to the user that created the job
schedule when he/she is logged in with the same user profile as on creation of the job
schedule. This default behavior can be changed. Select a user from the drop-down list to
show the Event Feedback message to that user instead. Please note that the selected user
must be logged in with the user profile defined in the Executing User Profile attribute to
receive the Event Feedback messages for this job schedule.

• Executing User Profile: The user profile that the user defined with the Executing User
attribute must be logged in with to receive Event Feedback messages for execution of this
job schedule. By default, message will be displayed to the user that created the job schedule
when he/she is logged in with the same user profile as on creation of the job schedule. This
attribute is mandatory if Executing User is defined.

4) Click OK to save your changes.

After having created the job schedule, you can use it as a template for creating new job schedules. Select
the job schedule in the table and click New > Create Job Schedule As Copy from the toolbar.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 221

Chapter 8: Predefined ADIF Schemes

Usually, ADIF import and export processes strongly depend on customer environments and requirements. Only few import processes are of general interest independ-
ent of the customer environment.

Predefined ADIF schemes are provided by Software AG if the demand for a specific import is of general interest. These predefined ADIF schemes are either private and
therefore cannot be changed at all or protected, in which case you can edit only a subset of the attributes of the preconfigured child elements of the ADIF scheme. It
is possible to add new ADIF elements to protected ADIF schemes. The ADIF elements added by the customer are public and completely editable. Private and protected
ADIF schemes have a lock symbol indicating their editability status. The lock is orange for protected ADIF schemes and red for private ADIF schemes. For a protected
ADIF scheme, editability of the attributes is visible in the attribute windows of the child elements only. Deactivated attributes are displayed in grey.

 FIGURE: Private, protected, and public ADIF schemes in the ADIF Explorer

Predefined ADIF schemes are delivered as part of the standard ADIF functionality and are documented as part of the triggered functionality or in the following. They
can be adapted to the customer requirements prior to use. Execution is carried out with the ADIF console application in the same way as the execution of a customer-
defined ADIF scheme.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 222

The following ADIF import schemes are predefined:

Group ADIF Import Scheme Provided Functionality For More Informaton See

Alfabet Stand-
ard Cost Cen-
tre Realloca-
tion Schemes

CC_Reallocate ADIF can be used to batch update budget costs and object
assignment to a cost centre as well as cost allocation rates.
For all imports via ADIF, cost re-allocation to objects as-
signed to the cost centres is not performed automatically
after import of the changed cost allocation data. Cost re-
allocation must either be performed manually or by running
the pre-defined ADIF import scheme.

Import Scheme to Automatically Reallocate
Cost Centre Costs

Alfabet Stand-
ard FusionMap
Information
Import
Schemes

FUSIONMAPINFO_IMPORT

Alfabet Stand-
ard Imports

Alfabet_CentraSite_As-
set_Synchronization

If the interface for data synchronization with CentraSite is
used, a standardized batch import of information about as-
sets that are common to Alfabet and CentraSite can be
performed via this predefined ADIF scheme. This ADIF
scheme is read-only and cannot be customized.

For more information about data synchroniza-
tion with CentraSite, see the section Configur-
ing Interoperability with CentraSite in the refer-
ence manual API Integration with Third-Party
Components.

Alfabet Stand-
ard Imports

Alfabet_CentraSite_Or-
ganization_Synchroniza-
tion

If the interface for data synchronization with CentraSite is
used, a standardized batch import of information about or-
ganizations that are common to Alfabet and CentraSite can
be performed via this predefined ADIF scheme. This
scheme is read-only and cannot be customized.

For more information about data synchroniza-
tion with CentraSite, see the section Configur-
ing Interoperability with CentraSite in the refer-
ence manual API Integration with Third-Party
Components.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 223

Group ADIF Import Scheme Provided Functionality For More Informaton See

Alfabet Stand-
ard Imports

Alfabet_Centra-
Site_User_Synchroniza-
tion

If the interface for data synchronization with CentraSite is
used, a standardized batch import of information about us-
ers that are common to Alfabet and CentraSite can be per-
formed via this predefined ADIF scheme. This scheme is
read-only and cannot be customized.

For more information about data synchroniza-
tion with CentraSite, see the section Configur-
ing Interoperability with CentraSite in the refer-
ence manual API Integration with Third-Party
Components.

Alfabet Stand-
ard Technope-
dia Interopera-
bility Schemes

ALFABET_TECHNOPEDIA_UP-
DATE

Vendor products/components as well their vendors can be
updated based on the data in Technopedia®, a categorized
repository of information about enterprise hardware and
software. An update can be performed by executing the
standard ADIF import scheme. The import scheme is not
customizable. The import scheme reads the configuration
specified in the XML object TechnopediaConfig.

The reference of a vendor product to an ICT ob-
ject will be updated during the execution of the
standard ADIF schemes available for Alfabet
Technopedia interoperability if both the vendor
product as well as the ICT object originated from
Technopedia and the Technopedia product ver-
sion/release associated with the vendor product
references a Technopedia product that is differ-
ent from the Technopedia product referenced by
the ICT object.

For more information about Technopedia in-
teroperability, see the section Configuring In-
teroperability with Technopedia in the refer-
ence manual API Integration with Third-Party
Components.

Alfabet Stand-
ard Imports

Alfabet_APIGateway_Syn-
chronization

APIs in webMethods API Gateway may be imported to
Alfabet by means of an ADIF import scheme. Technical ser-
vices cannot be exported via an ADIF scheme to webMeth-
ods API Gateway. If the import of APIs via ADIF is specified
in the XML object APIGatewayConfig, then the prede-
fined ADIF scheme

For more information about the configuration
required to import and map APIs from web-
Methods API Gateway to Alfabet, see the sec-
tion Configuring Interoperability with

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 224

Group ADIF Import Scheme Provided Functionality For More Informaton See

Alfabet_APIGateway_Synchronization must be exe-
cuted to trigger the import. The data from webMethods API
Gateway will be imported to temporary tables in ADIF. Fur-
ther configuration is required in order to update the Alfabet
database tables with the data in the temporary database
tables.

webMethods API Gateway in the reference
manual API Integration with Third-Party Com-
ponents.

Alfabet Stand-
ard Imports

Alfabet_APIPortal_Syn-
chronization

APIs in webMethods API Portal may be imported to Alfabet
by means of an ADIF import scheme. Technical services
cannot be exported via an ADIF scheme to webMethods API
Gateway. If the import of APIs via ADIF is specified in the
XML object APIPortalConfig, then the predefined ADIF
scheme Alfabet_APIPortal_Synchronization must be
executed to trigger the import. The data from webMethods
API Portal will be imported to temporary tables in ADIF. Fur-
ther configuration is required in order to update the Alfabet
database tables with the data in the temporary database
tables.

For more information about the configuration
required to import and map APIs from web-
Methods API Portal to Alfabet, see the section
Configuring Interoperability with webMethods
API Portal in the reference manual API Integra-
tion with Third-Party Components.

Alfabet In-
stance Auto-
mated Trans-
lations

Get_Instance_Auto-
mated_Transla-
tions_For_Empty_Texts

This private ADIF scheme retrieves automated translations
for permissible object class properties that have a value in
the primary language and are empty in one of the second-
ary languages. This ADIF scheme can be executed for ob-
ject classes for which the Enable Data Translation attrib-
ute is set to True. and that have at least one property set
to True in the Property Automated Translation attribute.

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated transla-
tions, see the section Configuring the Transla-
tion of Object Data in the chapter Localization
and Multi-Language Support for the Alfabet In-
terface in the reference manual Configuring
Alfabet with Alfabet Expand.

Alfabet In-
stance

GetAutomatedTransla-
tions_For_Instance

This private ADIF scheme retrieves automated translations
for permissible object class properties reusing existing
strings if possible. This ADIF scheme can be parametrized

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 225

Group ADIF Import Scheme Provided Functionality For More Informaton See

Automated
Translations

with an object reference string. This ADIF scheme can be
executed for object classes for which the Enable Data
Translation attribute is set to True. and that have at least
one property set to True in the Property Automated
Translation attribute.

translations, see the section Configuring the
Translation of Object Data in the chapter Locali-
zation and Multi-Language Support for the
Alfabet Interface in the reference manual Con-
figuring Alfabet with Alfabet Expand.

Alfabet In-
stance Auto-
mated Trans-
lations

GetAutoTranslationsForMM This private ADIF scheme uploads automated translations
to the translation tables.

Please note that to update the translations to reports and
report folders, the Update Translation functionality avail-
able on the root node of the Reports tab must be triggered.
To update the translations to workflows, the Update Work-
flow Translation functionality in the Globalization menu
must be triggered.

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated transla-
tions, see the section Configuring the Transla-
tion of Object Data in the chapter Localization
and Multi-Language Support for the Alfabet In-
terface in the reference manual Configuring
Alfabet with Alfabet Expand.

Alfabet In-
stance Auto-
mated Trans-
lations

Import_Instance_Vali-
dated_Auto_Texts

This protected ADIF scheme is the complementary to the
ADIF job Export_Instance_Automated_Texts and is
used to upload translated strings that have been reviewed
and corrected. This ADIF scheme can be executed for ob-
ject classes for which the Enable Data Translation attrib-
ute is set to True. and that have at least one property set
to True in the Property Automated Translation attribute.

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated transla-
tions, see the section Configuring the Transla-
tion of Object Data in the chapter Localization
and Multi-Language Support for the Alfabet In-
terface in the reference manual Configuring
Alfabet with Alfabet Expand.

Alfabet In-
stance Auto-
mated Trans-
lations

Renew_Instance_Auto-
mated_Translations_Auto-
mated_Texts

This protected ADIF scheme refreshes automated transla-
tions for permissible object class properties reusing exist-
ing strings if possible. This ADIF scheme can be executed
for object classes for which the Enable Data Translation
attribute is set to True. and that have at least one property

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated transla-
tions, see the section Configuring the Transla-
tion of Object Data in the chapter Localization
and Multi-Language Support for the Alfabet

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 226

Group ADIF Import Scheme Provided Functionality For More Informaton See

set to True in the Property Automated Translation at-
tribute.

Interface in the reference manual Configuring
Alfabet with Alfabet Expand.

Alfabet In-
stance Auto-
mated Trans-
lations

Rescan_Instance_Transla-
tions_To_Tmp

This protected ADIF scheme extracts existing manual
translations to the internal translation table ALFA_IN-
STANCE_VOCABULARY which will be used to match newly
saved texts to existing translations thus providing for reuse
of existing translations. It is recommended that customers
run this ADIF job when they begin using the automated
data translation capability. This ADIF scheme can be exe-
cuted for object classes for which the Enable Data Trans-
lation attribute is set to True. and that have at least one
property set to True in the Property Automated Transla-
tion attribute.

For more information about the automated data
translation capability as well as the configura-
tion required to execute automated transla-
tions, see the section Configuring the Transla-
tion of Object Data in the chapter Localization
and Multi-Language Support for the Alfabet In-
terface in the reference manual Configuring
Alfabet with Alfabet Expand.

The following information is available:

• Import Scheme to Automatically Reallocate Cost Centre Costs

• Use Case

• Understanding the CC_Reallocate Scheme

• Adapting the Scheme to the Current Environment Prior to Use

• Selecting a Subset of the Available Cost Centres for Update

• Taking Monetary IDs Other Than Current Into Account

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 227

Import Scheme to Automatically Reallocate Cost Centre Costs

Scheme Type: Import Scheme

Name : CC_Reallocate

Supported Alfabet Functionality: Cost Management

Provided Functionality: Reallocation of costs to objects assigned to cost centres after cost assignment to cost centres has changed.

Use Case

The Cost Management functionality in Alfabet allows you to manage costs based on cost centres. The cost centre is a means to centrally define costs and allocate
them according to a defined allocation scheme among a group of architecture objects. In a cost centre, you define the costs of the cost centre for different years and
cost types, the objects to which the costs are allocated, and the way that costs are allocated to the objects.

When the costs assigned to the cost centre are changed on the Cost Accrual page view of the cost centre, the cost allocation to objects is updated automatically.
Assignment of new objects to the cost centre or manual definition of cost distribution rates on the Objects page view of the cost centre requires manual update of
the cost allocation. The manual update is performed by clicking the Reallocate Costs button on the Objects page view.

Cost centres are configured in the Cost Centres functionality in Alfabet. For more information about cost centres, see the section Configuring Cost Centres
for Cost Management Capabilities in the reference manual Configuring Evaluation and Reference Data in Alfabet.

ADIF can be used to batch update budget costs and object assignment of a cost centre as well as cost allocation rates. For all imports via ADIF, cost allocation is not
performed automatically but must be updated manually. This can be done in two ways:

• In the Alfabet interface, navigate to the Objects page view of each cost centre and click the Reallocate Costs button.

or

• Execute the preconfigured ADIF scheme CC_Reallocate via the ADIF console application to batch update all cost allocations for all cost centres. For

information about how to run an ADIF scheme job, see Starting Data Import, Export, or Manipulation via ADIF.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 228

Understanding the CC_Reallocate Scheme

This section describes the processing done via the CC_Reallocate scheme. The information is not required to run the scheme. You can read this information if you

want to import cost centre related data via ADIF and are not familiar with the underlying database object structure yet.

It is important to understand the way that changes to a cost centre configuration are processed in Alfabet to understand the CC_Reallocate Scheme.

The following Alfabet object classes are involved in the process:

Name Caption Description

CostCentre Cost Centre Representation of a cost centre object.

CostCentreAllocation Cost Centre Allocation Supporting class that stores information about object assignment to cost centres.

BudgetValue Budget Value Supporting class that stores information about cost values in the cost management functionality.

When an object is assigned to the cost centre on the Objects page view of the cost centre, a new instance of the object class CostCentreAllocation is created
that references both the cost centre and the object. In addition, it stores the percentage of the cost centre costs that shall be assigned to an object if the cost alloca-
tion (a percentage) is manually defined.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 229

Please note the following:

• Cost centres are created in the Cost Centres functionality in Alfabet. For more information about cost centres, see the section Configuring Cost
Centres for Cost Management Capabilities in the reference manual Configuring Evaluation and Reference Data in Alfabet.

• The editability of costs centres is configured in the XML object CostManagerDef. For more information about these configuration requirements for

cost centres, see the section Configuring the Editability of Costs in Cost Centres in the reference manual Configuring Alfabet with Alfabet Expand.

• Currencies are configured in the Reference Data functionality in Alfabet. For more information about configuring currencies, see the section
Configuring Currencies and Currency Exchange Rates for Cost Management Capabilities in the reference manual Configuring Evaluation and
Reference Data in Alfabet.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 230

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 231

In a second step, the budget assigned to the object is updated. The object's budget is also defined in instances of the object class BudgetValue.

If an object is only assigned to one cost centre, the budget value instances assigned to the object are identical to the budget value instances of the CostCentreAl-
location referencing the object, except that the Owner is the object instead of the CostCentreAllocation.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 232

If an object is assigned to multiple cost centres, the budget value instances of the object are the sum of all budget values where the owner is a CostCentreAlloca-
tion with a reference to the object and an identical specification of the year, cost type and monetary ID.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 233

For example, a cost centre has two objects assigned: application 1 and application 2. The cost allocation is defined manually. 60 % of the costs are assigned
to application 1 and 40 % of the costs are assigned to application 2. This information is stored in two CostCentreAllocation instances in the Alfabet
database.

The costs are defined for the years 2010 and 2011 and for the cost types Maintenance and License. The monetary ID and the monetary unit are identical for
all cost definitions and are not included in the example in order to keep it simple.

The budget specification on the cost centre leads to the generation of four instances of the object class BudgetValue, one for each combination of year
and cost type.

During cost allocation, BudgetValue instances are created for the two CostCentreAllocation instances of the cost centre. Each CostCentreAlloca-
tion has the same amount of BudgetValue instances assigned as the cost centre. The BudgetValue instances are identical to the BudgetValue in-
stances of the cost centre except that the Owner is the CostCentreAllocation and the Value is the percentage of the cost value for the cost centre
defined by the cost allocation rate.

Each object assigned to the cost centre allocation then gets the same BudgetValue instances defined with the owner set to the object. Application 1 only
gets cost allocated from Cost Centre 1. Therefore the Value settings of the BudgetValue instances of the object are identical to the Value settings of the
BudgetValue instances of CostCentreAllocation 1. The licence fees for application 2 are allocated via two different cost centres. Therefore, the Value
defined in the BudgetValue for application 1 is the sum of the BudgetValue instances from the cost centre 1 and the other cost centre.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 234

The ADIF scheme CC_Reallocate performs the re-allocation of costs after a change to the configuration of cost centres has been performed via ADIF in a five step
process, each being triggered by an import entry. The current information about available cost centres as well as CostCentreAllocation instances and Budget-
Value instances referencing the cost centres is taken over from the Alfabet database and processed in temporary tables.

After executing the ADIF scheme CC_Reallocate, the information in the BudgetValue table in the Alfabet database is updated. The update is limited to BudgetValue
instances of CostCentreAllocation instances and objects that are created via cost allocation processes.

The table provides an overview of the sequence of action performed when running the CC_Reallocate scheme:

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 235

Import Entry Action Performed

Select Updated Cost
Centres

Information about all CostCentre instances in the Alfabet database is written to a temporary table CC_Temp.

NOTE: By default, data about all available cost centres is written to the temporary table. You can alter the import entry to consider only
a subset of the available cost centres. For more information, see Selecting a Subset of the Available Cost Centres for Update

Update Allocation
Percentages for all
CCA Objects

Information about all CostCentreAllocation instances in the Alfabet database that are relevant for the cost centres in the table
CC_Temp is written to a temporary table CCA_Temp together with the information about the overall number of objects assigned to a
cost centre. The allocation rate is either taken over from the property Allocation of the CostCentreAllocation instances or calcu-
lated from the overall number of objects when equal allocation is activated.

Get Related Monetary
Types

A temporary table CCOBJ_MTYPE_TMP is created that lists the cost types that are relevant for the cost centres. The information is re-
quired in step five to identify which parts of the cost planning of applications, projects, deployments, ICT objects, or service products
are defined via cost centre allocation.

Update CCA Budget
Values

Based on the information in the previously created temporary tables and the BudgetValue information in the Alfabet database, the
BudgetValue instances for all updated CostCentreAllocation instances in the table CCA_Temp is calculated and written to a tem-
porary table MV_CCA_Temp.

The data in the temporary table is then used to update the data in the BudgetValue table of the Alfabet database. New instances are
added, existing instances are updated or, if they are obsolete, deleted.

Update Objects
Budget Values

Based on the information in the previously created temporary tables, the BudgetValue instances for all objects assigned to one or
multiple cost centres in CC_Temp is calculated and written to a temporary table MV_Temp.

The data in the temporary table is then used to update the data in the BudgetValue table of the Alfabet database. New instances are
added, existing instances are updated or, if they are obsolete, deleted.

NOTE : The calculation of budget cost values is limited to budget value instances that have a MonetaryID set to Current, because
only current costs are handled via cost centres in the default configuration of Alfabet. If you altered the configuration of the cost

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 236

Import Entry Action Performed

definition type editability in the XML object CostManagerDef, you must adapt the CC_Reallocate scheme accordingly. For more in-
formation, see Taking Monetary IDs Other Than Current Into Account.

Adapting the Scheme to the Current Environment Prior to Use

The default update must be adapted to suit your demands. You must alter the following part of the process:

• Selecting a Subset of the Available Cost Centres for Update

Optionally, you can alter the following part of the process:

• Taking Monetary IDs Other Than Current Into Account

Selecting a Subset of the Available Cost Centres for Update

The query in the scheme that finds the cost centre data to be written to the temporary database table includes a WHERE clause to re-allocate costs only for a subset of
the available cost centres. The example WHERE clause limits update to cost centres starting with’AAA' which inhibits cost re-allocation for any cost centres in most

databases. Prior to using the CC_Reallocate scheme, you must therefore alter the query to find cost centres matching you demands.

When the budget values for objects are impacted by more than one cost centre, it is recommended that you update all cost centre data without restricting
the update to a subset of updated cost centres to make sure that all relevant updates are performed.

To define cost allocation via the CC_Reallocate scheme for a defined set of cost centres in the Alfabet database:

1) In the ADIF explorer of Alfabet Expand, go to CC_Reallocate > Select Updated Cost Centres > SQL Commands - OnComplete > Insert Updated
cost centres.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 237

2) In the attribute window of the SQL Command Insert Updated cost centres click the Browse button in the Text attribute field. The query of the SQL

command is displayed in a text editor.

3) Alter the WHERE clause in the query to define which cost centres shall be included in the cost centre allocation process or delete the WHERE clause to update
all cost centres.

The following example displays the query with a WHERE clause restricting cost re-allocation to cost centres that are owned by the organiza-
tion’Corporate IT'. Please note that the definition of the condition requires that two objects are found by the query and therefore the SELECT
clause must be altered to include class specifications. These class specification must then be removed from the resulting column names by defin-
ing an alias for the column name.

INSERT CC_TMP

SELECT cc.REFSTR, cc.NAME As’NAME', cc.EQUALALLOCATION As’EQUALALLOCATION'

FROM COSTCENTRE cc, ORGAUNIT org

WHERE cc.OWNER = org.REFSTR

AND org.NAME =‘Corporate IT'

4) Click OK to save your changes.

Taking Monetary IDs Other Than Current Into Account

The property MonetaryID of the class BudgetValue defines, whether the budget value is defined for a cost request, budgeted costs, current costs, committed costs

or forecast costs. By default, Alfabet is configured to manage only current costs via cost centres and the CC_Reallocate scheme therefore only handles Budget-

Value instances assigned to objects that have a MonetaryID set to Current.

You can configure Alfabet to manage other cost definition types via cost centres. Configuration is carried out in the XML object CostManagerDef in the configura-

tion tool Alfabet Expand.

For more information about the configuration of the XML object CostManagerDef, see Configuring Cost Management Capabilities in the reference man-
ual Configuring Alfabet with Alfabet Expand.

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 238

While most of the CC_Reallocate Scheme handles BudgetValue instances that are defined for a cost centre independent of the MonetaryTypeID, the query that

scans the Alfabet database for BudgetValue instances that are obsolete uses the MonetaryID to define whether a BudgetValue instance owned by an object was
created due to a cost centre cost allocation.

To include other cost definition types in the update of budget values with the CC_Reallocate scheme:

1) In the ADIF explorer of Alfabet Expand, go to CC_Reallocate > Update Object's Budget Values > SQL Commands - OnComplete > Delete unused
objects.

2) In the attribute window of the SQL Command Update changed budget values click the Browse button in the Text attribute field. The query of the

SQL command is displayed in a text editor.

3) Change the WHERE clause that restricts data processing to BudgetValue instances with a MonetaryID set to Current to restrict data processing to the set
of MonetaryIDs that you want to be included.

The following example displays the query with a WHERE clause including the MonetaryIDs Current and Budget:

DELETE FROM BUDGETVALUE

WHERE (REFSTR IN

(SELECT BV.REFSTR

FROM BUDGETVALUE AS BV

INNER JOIN ON BV.MONETARYTYPE = CCOBJ_MTYPE_TMP.MONETARYTYPE AND

BV.OWNER = CCOBJ_MTYPE_TMP.OBJECT

WHERE (BV.REFSTR NOT IN

(SELECT DISTINCT REFSTR

FROM MV_TMP))

AND

(BV.MONETARYCODEID =‘Current'

OR BV.MONETARYCODEID =‘Budget')))

4) Click OK to save your changes.

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 239

INDEX

Active Directory import 57

ADIF

ADIF_Schemes explorer 28

configuration interface 28

configuring XML in editor 37

debugging 176

exporting scheme 39

internal XML editor 38

merge from file 39

meta-model explorer node 34

query editor 32

replace from file 39

saving scheme to file 39

ADIF configuration interface

ADIF_Schemes explorer 28

debugger 176

mata-model sub-tree 34

ADIF console application

command line arguments 187

overview 184

required input 186

starting 187

ADIF debugger

simulating command line arguments 177

ADIF export

conditional execution 162

configuring 126

configuring export scheme 127

configuring export to TXT file 146

configuring logging 170

data mapping in external database 158

execution order 126

overview 126

parameters 164

SQL command 155

start 184

to comma separatd file formats 146

to Excel 150

to external database 130

to XML file 134

ADIF export scheme

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 240

Arguments Table Name 164

attributes 128

configuring 126

configuring conditional execution 162

configuring export to CSV file 146

configuring export to XML file 134

creating 128

export to Excel 150

parameters 164

Parameters Backward Compatibility Mode 164

scheduling execution 209

SQL commands 155

ADIF import

configuring audit history 122

configuring conditional execution 109

configuring import scheme 40

configuring logging 117

data bind 87

execution order 40

from active directory 57, 62

from comma separated file formats 77

from Excel files 77

from external database 52

import formats 41

overview 40

parameters 111

references 89

relations 89

required import data structure 41

start 184

starting workflow 123

ADIF import scheme

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 241

Arguments Table Name 111

attributes 46

configuring 40

configuring start of workflow 123

creating 46

Import Entry 79

import from active directory 57, 62

import from comma separated file formats 77

import from Excel 77

import from external database 52

import from LDAP table 57

JSON import 67

Parameters Backward Compatibility Mode 111

scheduling execution 209

semi-automatic element creation 101

SQL Command 103

sub-elements 44, 50

XSL pre-processing of XML 67

ADIF importmapping data 81

ADIF Job Server Sleep Time 208

ADIF Jobs Administration

delete table entries 218

ADIF scheme

changing order of sub-elements 30

copying elements 30

deleting elements 31

export 39

moving elements 30

save to file 39

structuring in groups 32

ADIF scheme elements

changing order 30

copying 30

deleting 31

moving 30

ADIF session information

clearing 218

ADIF tab 28

ADIFIF import

from LDAP table 57

Alfabet

meta-model 10

Alfabet database

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 242

audit history 20

data types 16

object data translation 16

relations 19

structure 15

unique identifiers 15

Alfabet meta-model

audithistory 20

class configuration 26

configuration 20

configuring cost data 26

configuring evaluations 26

configuring object class properties 24

customizing 20

data types 16

database tables 15

deletion trigger 13

details 10

enumeration 25

integrity reference 13

mandates 23

object class 11

object class property 13

object data translation 16

relations 19

stereotypes 22

unique identifiers 15

XML object 26

Alfabet_APIGateway_Synchronization 223

Alfabet_APIPortal_Synchronization 224

Alfabet_CentraSite_Asset_Synchronization 222

Alfabet_CentraSite_Organization_Synchronization 222

Alfabet_CentraSite_User_Synchronization 223

ALFABET_TECHNOPEDIA_UPDATE 223

API Access Options

asynchronous ADIF execution 198

job schedule 207

Arguments Table Name 111, 164

asynchronous execution

REST API user 198

audit

for import 122

audit table

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 243

clean-up 122

import user name 123

structure 20

Automatically Managed 11, 36

cancelling

job schedule 211

category 205

CC_Reallocate 222, 227

changing

order of ADIF scheme elements 30

clear ADIF session information 218

command line arguments

ADIF console application 187

setting during debugging 177

Commit After Run 46, 177

conditional execution

of import 109

configuration interface

ADIF 28

cost center costs 227

Create Entry for Hierarchical JSON 67

Create JSON Import Set 72

Create JSON Set from File 72

CSV file

export 146

CSV import 77

customizing

Alfabet meta-model 20

data bind 87

data import

commit after run 46

delete import files 46

processing parameters 46

roll back after execution 46

data types

of the Alfabet meta-model objects 16

database

import from external 52

Database Export Set

attributes 130

configuring 130

Database Import Set

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 244

attributes 52

creating 52

debugger

ADIF configuration interface 176

default value

of object class property 25

documents

related 9

drop temporary tables 46

enumeration

in Alfabet meta-model 25

Event Server Sleep Time 208

Excel file

export to 150

Excel import 77

execute now

job schedule 211

export

configuring 126

Export Entry

configuring export to CSV and TXT 147

export to CSV and TXT files 146

export to Excel file 150, 151

export to external database 132

export to XML file 134

external database

mapping data during export 158

external database import 52

File Import Set

attributes 77

creating 77

FUSIONMAPINFO_IMPORT 222

Get_Instance_Automated_Translations_For_Empty_Texts 224

GetAutomatedTranslations_For_Instance 224

GetAutoTranslationsForMM 225

grouping

of ADIF schemes 32

help

for query building 33

IDOC see Internal Document Selector

IDocManagerConfiguration

XML object 206

import

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 245

commit after run 46

delete import files 46

drop temporary tables

data import
drop temporary tables .. 46

processing parameters 46

roll back after execution 46

Import Entry

attributes 83

configuring 79

creating 83

creating from import data 101

for hierarchical JSON 67

import files

delete after import 46

import scheme

configuring 46

cost center costs 227

creating 46

name 46

import user

configuring for audit 123

Import_Instance_Validated_Auto_Texts 225

integrity reference

in the Alfabet meta-model 13

Internal Document Selector

permissions 206

job schedule

ADIF export 211

ADIF import 215

cancelling 211

Clear ADIF Session Information 218

configuring ADIF 204

create as copy 211

execute now 211

execution 209

REST API user 207

resuming 211

show log 211

JSON

ADIF import 67

LDAP import 57

LDAP Import Set

attributes 57

creating 57

logging

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 246

configuring for export 170

for import 117

mandate

Alfabet concept 23

configuration 23

mandate mask 23

mandate mask 23

mapping import data to Alfabet 81

merge from file

ADIF scheme 39

meta-model

Alfabet meta-model 10

name

import scheme 46

object class

automatically managed 11, 36

dependencies 13

in the Alfabet meta-model 11

mandate setting 23

not to be changed via ADIF 11, 36

object class property

based on enumeration 25

configuring 24

default value 25

default valusize restriction 25

in the Alfabet meta-model 13

parameter

for import 111

parameters

ADIF export scheme 164

Parameters Backward Compatibility Mode 111, 164

preconditions

license 9

skills 8

property

based on enumeration 25

configuring 24

default value 25

of object class 13

size restriction 25

query see SQL query

query editor

help 33

opening 32

Reference

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 247

importing 89

in the Alfabet meta-model 19

reference array

importing 89

in the Alfabet meta-model 19

related documents 9

relations

between objects 19

importing 89

RELATIONS table 19

RELATIONS table

structure 19

Renew_Instance_Automated_Translations_Automated_Texts 225

replace from file

ADIF scheme 39

Rescan_Instance_Translations_To_Tmp 226

REST API user

asynchronous ADIF execution 198

job schedule 207

RESTful service call

starting ADIF 192

resume

job schedule 211

roll back after execution 46

save to file

ADIF scheme 39

Server Alias 208

Set as Executes Self-Reflective Events Use 198, 207

show log

job schedule 211

size restriction

of object class property 25

SQL Command

attributes 106

creating 106

creating for export 158

data bind 87

for ADIF Import Scheme 103

for export 155

SQL query

defining 32

defining for different database servers 33

starting

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 248

ADIF export 187

ADIF import 187

starting ADIF export

via RESTful services 192

starting ADIF import

via RESTful services 192

stereotype

configuration 22

of Alfabet object class 22

support 9

syntax

SQL query on different servers 33

temporary table

for multiple files 100

temporary tables

drop 46

translation

of AlfabetngIT object data 16

TXT file

export 146

TXT import 77

use case

JobScheduler 205

UseCaseCategories

XML object 205

user

asynchronous ADIF execution 198

for job schedule execution 207

Values for Variables via Query

ADIF export event template 115, 168

Variable Names

ADIF export event template 115, 168

variables

for import 111

workflow

starting during import 123

XML

XSL transformation 67

XML editor

of ADIF configuration interface 38

XML file

export to 134

XML import 62

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 249

XML Import Set

attributes 62

creating 62

creating from import data 102

XML object

configuration element of the Alfabet meta-model 26

IDocManagerConfiguration 206

UseCaseCategories 205

XSL transformation

in ADIF import scheme 67

	Chapter 1: Alfabet Data Integration Framework
	Advantages of the Alfabet Data Integration Framework
	Preconditions
	Required Skills
	Licenses
	Related Documents
	Support

	Chapter 2: The Alfabet Meta-Model in the Alfabet Database
	Understanding the Standard Meta-Model
	About Object Classes
	About Object Class Properties

	About the Storage of Object Data in the Alfabet Database
	Database Table Structure and Unique Identifiers
	Storage of Translatable Object Class Properties
	Data Types and Formats
	Storage of Relations Between Object Classes
	Audit History Storage

	Preconfigured and Customized Restrictions for Data Input
	Object Class Configuration
	Object Class Property Configuration
	XML-Based Definitions
	Reference and Evaluation Data and Class Configuration

	Chapter 3: Configuring ADIF Schemes
	Configuring ADIF via the ADIF Explorer
	The ADIF Schemes Sub-Tree of the ADIF Explorer
	The Meta-Model Sub-Tree of the ADIF Explorer

	Configuring ADIF via XML Editing
	Internal XML Editor
	External Editors

	Chapter 4: Configuring Data Import with ADIF
	Data Processing During Import
	Execution Steps of the Import Process
	Preparing Data For Import
	Microsoft® Excel® Files
	XML Files
	JSON Files
	Comma-Separated Formats (*.csv)
	External Databases

	Conceptualizing Data Import
	Configuring the ADIF Import Scheme
	Creating an ADIF Import Scheme

	Configuring Import from Different External Source Formats
	Defining Data Upload from an External Database in a Database Import Set
	Defining Data Upload from an LDAP Table in an LDAP Import Set
	Defining Data Import From XML Files in an XML Import Set
	Defining Data Import from JSON Files
	Defining Data Import from Microsoft® Excel Files and Comma-Separated File Formats

	Defining Import of External Data in an Import Entry
	Mapping External Data to Temporary Tables and Alfabet Database Tables
	Defining Relations
	Collecting Data from Multiple External Files or Database Tables in one Temporary Table
	Semi-Automatic Creation of Import Entry Definitions for Import Files

	Configuring SQL Commands for Optional Enhanced Import Features
	Creating SQL Commands
	Use Case: Filling Empty Property Values with Default Values When Importing to Mandatory Object Class Properties
	Use Case: Defining Import-Related Custom Properties

	Configuring Execution of the Import Scheme Dependent on Current Parameters
	Configuring the Conditional Execution of Parts of the Import Scheme
	Configuring Import Dependent on Parameters

	Configuring Logging Parameters
	Configuring Log Message Content

	Configuring the Import Audit History
	Clean-up of the audit tables
	Information about the Import User

	Configuring the Automatic Start of Workflows During Import

	Chapter 5: Configuring Data Export with ADIF
	The Export Process
	Basic Configuration of Data Export
	Creating an ADIF Export Scheme
	Configuring Export to External Database Tables
	Configuring Export to XML Files
	Configuring Export to Comma-Separated Data Files
	Configuring Export to Microsoft® Excel® Files

	Configuring SQL Commands for Optional Export Enhancements
	Creating SQL Commands
	Use Case: Update Existing Data Records in a Target Database
	Use Case: Defining Export-Related Custom Properties
	Use Case: Data Restructuring Prior to Export Using Temporary Tables

	Configuring Execution Dependent on Current Parameters
	Configuring Conditional Execution for Parts of the Export Scheme
	Configuring Export Dependent on Parameters

	Configuring Logging Parameters
	Configuring Log File Storage and Handling
	Configuring Log Message Content

	Chapter 6: Debugging an ADIF Configuration
	Understanding the Debugger Interface
	Understanding the Debugging Process
	Required Configuration of the ADIF Scheme Prior to Debugging
	Performing a Debug Run
	Required Configuration of the ADIF Scheme After Debugging

	Chapter 7: Starting Data Import, Export, or Manipulation via ADIF
	Executing ADIF via a Command Line Tool
	Providing Relevant Data and Configuration
	Starting the ADIF Console Application

	Executing ADIF via RESTful Service Calls
	Executing ADIF via an Event
	Executing ADIF via a Button in the Alfabet User Interface
	Configuring the ADIF Scheme to be Executable via the User Interface
	Adding a Button for ADIF Execution to a Configured Report
	Adding a Button for ADIF Execution to an Object View

	Executing and Controlling ADIF via the ADIF Jobs Administration and My ADIF Jobs functionalities in the Alfabet User Interface
	Configuring Availability of ADIF Execution and Control in the User Interface
	Configuring Asynchronous Execution
	Configuring Access Permissions to Folders in the Internal Document Selector for Asynchronous Export to File
	Configuring a User to Execute Self-Reflective Events
	Controlling Success of Executed ADIF Jobs
	Executing ADIF
	Testing ADIF Scheme Execution
	Scheduling ADIF Jobs for Execution at a Defined Time With the Job Schedule Functionality
	Preconditions for Using the Job Scheduler
	Scheduling ADIF Jobs via the Job Scheduler Functionality
	Creating a Job Schedule for ADIF Export
	Creating a Job Schedule for ADIF Import
	Creating a Job Schedule for Batch Deletion of Old ADIF Session Information

	Chapter 8: Predefined ADIF Schemes
	Import Scheme to Automatically Reallocate Cost Centre Costs

