

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 1

Alfabet Reference Manual

Enterprise Architecture
Management

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 2

Documentation Version Alfabet 10.15.1

Copyright © 2013 - 2023 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
and/or its subsidiaries and or/its affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your
License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks
of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licen-
sors. Other company and product names mentioned herein may be trademarks of their respective owners.

This software may include portions of third-party products. For third-party copyright notices, license
terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of
Third Party Products". For certain specific third-party license restrictions, please refer to section E of the
Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright
and Trademark Notices of Software AG Products". These documents are part of the product documenta-
tion, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Software AG products provide functionality with respect to processing of personal data according to the
EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are documented in the
respective administration documentation.

http://softwareag.com/licenses

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 3

Conventions used in the documentation

Convention Meaning

Bold Used for all elements displayed in the Alfabet interface including, for example, menu
items, tabs, buttons, dialog boxes, page view names, and commands.

Example: Click Finish when setup is completed.

Italics Used for emphasis, titles of chapters and manuals.

this

Example: see the Administration reference manual.

Initial Capitals Used for attribute or property values.

Example: The object state Active describes...

All Capitals Keyboard keys

Example: CTRL+SHIFT

File > Open Used for menu actions that are to be performed by the user.

Example: To exit an application, select File > Exit

< > Variable user input

Example: Create a new user and enter <User Name>. (Replace < > with variable data.)

This is a note providing additional information.

This is a note providing procedural information.

This is a note providing an example.

This is a note providing warning information.

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 4

Table of Contents

Chapter 1: Introduction to Enterprise Architecture Management 5

Chapter 2: Application Architecture Definition 6
Methodology: Understanding the Application Architecture 6
Understanding Governance and Responsibility for Applications 8
Capturing the Applications in Your Enterprise 8
Defining Application Lifecycles 10
Versioning Applications 11
Specifying Local Components for Applications 13
Capturing Operational Business Supports 14
Capturing ICT Objects to Understand IT Costs 16
Capturing Relevant Peripherals 19

Chapter 3: Information Architecture Definition 20
Methodology: Understanding the Information Architecture 20
Prerequisite: Specifying the Connection Information for Information Flows 22
Defining Information Flows Between Applications, Local Components, and Peripherals 23
Defining the Business Data That Is Exchanged 24
Defining Local Components as Interfaces 25
Defining an Interface System 26

Chapter 4: Technology Architecture Definition 28
Methodology: Understanding the Technical Architecture 28

Components in the Technical Architecture 28
Standard Platforms in the Technical Architecture 29
Deployments in the Technical Architecture 31

Understanding Governance and Responsibility for Components 32
Documenting and Defining the Components in Your Enterprise 33
Defining the Component's Lifecycle 35
Versioning the Component 36
Defining the Technical Services Delivered by the Component 37
Defining Platform Templates and Standard Platforms 39
Defining the Platform Architecture for an Application or Component 41
Defining the Operational Deployment of an Application, Component, or Standard Platform 42
Defining and Managing Technical Networks and Deployments 45

Chapter 5: Business Process Definition 48
Methodology: Understanding Business Process Models 48
Understanding Governance and Responsibility for Business Process Models 50
Defining the Business Process Models in Your Enterprise 50
Documenting and Defining the Business Processes 51
Specifying Business Process Model Variants 52

Chapter 6: Organization Definition 53
Understanding Governance and Responsibility for Organizations 53
Capturing Organizations 54

 Chapter 1: Introduction to Enterprise Architecture Management

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 5

Chapter 1: Introduction to Enterprise Architecture Management

The Enterprise Architecture Management sales package allows you to describe complex IT systems in
terms of their business, application, information and technical layers. The capabilities available in the En-
terprise Architecture Management sales package enable you to capture your IT inventory, develop stand-
ards for change in the enterprise and support enterprise architects to align the IT landscape with the busi-
ness in order to guide competitive transformation.

The Enterprise Architecture Management sales package can be used by enterprise architects to:

• capture the application architecture including lifecycle and versioning information

• document the information exchanged between applications and the data that is transferred

• assign applications, components, and platforms supporting the application architecture to ICT
objects in order to plan and control costs in the IT

• define the enterprise's physical infrastructure and how it is used to support and deploy
applications

• specify the enterprise’s IT standards including templates describing the tiers and layers
constituting platforms, and standard platforms prescribing the components to use in application
platforms

• specify a comprehensive library of business objects and their business data

• describe the enterprise's business processes in order to understand how these are supported by
the enterprise's applications

• document the organizational hierarchy in the enterprise

The following information is available:

• Introduction to Enterprise Architecture Management

• Application Architecture Definition

• Information Architecture Definition

• Technology Architecture Definition

• Business Process Definition

• Organization Definition

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 6

Chapter 2: Application Architecture Definition

The Application Architecture Definition capability allows you to capture applications and specify the appli-
cation architecture. The following information is available regarding the Application Architecture Definition
capability:

• Methodology: Understanding the Application Architecture

• Understanding Governance and Responsibility for Applications

• Capturing the Applications in Your Enterprise

• Defining Application Lifecycles

• Versioning Applications

• Specifying Local Components for Applications

• Capturing Operational Business Supports

• Capturing ICT Objects to Understand IT Costs

• Capturing Relevant Peripherals

Please note that a context-sensitive Help is available for each view available in the Application
Architecture Definition capability. You should refer to the Help if you require an explanation
about the functionalities and information available in a specific view.

Methodology: Understanding the Application Architecture

The application architecture is a detailed description of a specific application. An application is a fully func-
tional integrated IT product that provides functionality to the end user and supports the business to ac-
complish its mission.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 7

The application architecture includes the application itself as well as any local components that are specifi-
cally required to implement the application. For example, the trading application Trade*Net might require
the components Oracle Database, Apache Web Server, and IBM Power Server.

An application differs from a component in that the application directly supports the enterprise's business
processes and organizations via operational business supports, has its own budget, is worked with and is
known by name by the end user. Standard and local components do not typically provide functionality to
end users but rather provide technical functionality to support an application. An operating system, data-
base management system, or application server are examples of local components that an application typi-
cally requires. Any component supporting a specific application is defined as a local component and is not
reusable by other applications or components.

A first step to qualify the value of IT with minor effort is to understand an application's operational business
supports. An operational business support describes which business processes are supported by an appli-
cation.

An application may have several physical deployments. Each deployment may have one or more stacks,
which define the technically-installed infrastructure required for the operational deployment. Basic infor-
mation about simple deployments may be captured in the context of defining the application architecture
or they may be defined in technical detail in the context of defining the technical architecture as described
in the section Defining the Operational Deployment of an Application, Component, or Standard Platform.

In addition to capturing an application's local components and deployment infrastructure, you can also
specify the ICT object that owns the application. An ICT object (ICT = Information and Communication
Technology) is an abstract object that represents applications regardless of their versioning and is a means
to plan and control costs related to the application and its infrastructure. An ICT object owns the applica-
tion and all of its application versions. The same ICT object can also own components, devices, solution
building blocks, vendor products, and standard platforms, thus allowing the applications technological in-
frastructure to be budgeted along with the application. An ICT object is owned by an organization that is
typically responsible for the ICT object's budget.

Finally, in the context of the Application Architecture Definition capability, you can also capture peripherals.
A peripheral typically represents an application that is managed by business partners, such as an EDI

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 8

gateway or a B2B marketplace. It is outside of the core scope of the Alfabet solution but may be a source or
target of an application's information flow.

Understanding Governance and Responsibility for Applications

A number of governance concepts are implemented in the Application Architecture Definition capability:

• Authorized User: Each application has an authorized user. An authorized user has primary
responsibility for the application and thus has Read/Write access permissions to it. Users may also
be assigned to authorized user groups. All users assigned to an authorized user group that has
been defined for an application will have Read/Write access permissions to the application.

• Roles: A role defines the functional relationship or responsibility that a user or organization has to
an application (for example, the Risk Manager or Architect of an application). Roles describe
responsibilities but they do not authorize access permissions to the application in Alfabet.

• Object Class Stereotypes: Object class stereotypes may be configured by your solution designer
for the object class Application. This allows for a different governance approach between different
kinds of applications such as, for example, Business Applications and Technical Applications. If
object class stereotypes are configured for the object class Application, each stereotype may
capture a specified set of attributes, reference data, and class configurations as well as implement
a different governance approach.

• Mandates: Applications may be managed in a federated architecture. Mandates are typically
configured if object class stereotypes have been configured. By means of a federated
architecture, it is possible to specify the visibility of individual applications in the Alfabet interface
for specific users.

• Application Groups: Applications may be structured in one or more application groups. Each
application group has an authorized user and may have authorized user groups. The authorized
users of an application group will have access permissions to all applications in the application
group.

To capture application groups, you must have access to the Application Portfolio Governance
capability which is part of the Portfolio Management Basic sales package.

Objects in Alfabet are managed by various access permission concepts. For an overview of the
access permission and governance concepts in Alfabet, see the section Understanding Access
Permissions in Alfabet in the reference manual Getting Started with Alfabet.

Capturing the Applications in Your Enterprise

Applications are captured in the Document Application Functionality and Capture Applications Functional-
ity functionalities. These views allow applications to be documented and defined in a quick and efficient
manner. This capability is particularly useful for users with data entry responsibilities.

If object class stereotypes have been configured by your solution designer for the class Application, you
will first be asked to select the stereotype that the application is based on. The application is then created
and defined by means of the Application editor.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 9

 FIGURE: Application editor used to create the trading application Trade*Net

The following data is mandatory and must be defined when an application is created:

• Each application requires a unique name and version number. Applications can be versioned as
needed. This is described in more detail in the section Versioning Applications.

• Each application requires planned start and end dates specifying when the application will be in
production. The lifecycle phases of the application can then be defined later. This is described in
more detail in the section Defining Application Lifecycles.

• Each application requires an object state. In the example above, a default object state has been
configured that is automatically entered when the application is created. This can be changed
however via the Change State button available in the application's object profile/object cockpit.

• Each application requires a release status, which typically expresses agreement to the state of the
documented information. In the example above, a default release status has been configured that
is automatically entered when the application is created. This can be changed in the editor, if
needed.

The following information is optional:

• You should define a short abbreviated name to display on the application in diagrams, matrix
reports, and business graphics.

• You may specify which ICT object owns the application. For more information about capturing ICT
objects, see the section Capturing ICT Objects to Understand IT Costs.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 10

• You may assign the application to a functional domain. From a functional point of view, the domain
is the owner of the application.

To capture domains, you must have access to the Business Capability Management ca-
pability which is part of the Portfolio Management Basic sales package.

• You should provide a description of the application so that other users understand the purpose of
the application.

• As the creator of the application, you are automatically defined as the authorized user per default.
The authorized user of the application can be changed in the Authorized Access tab. You can also
define any user groups that should have Read/Write access permissions to the application in the
Authorized Access tab.

Operational costs can be captured for applications as an alternative to managing IT budgets via
cost centers or ICT object budgets. In order to capture cost information, you must have access
to the Opex Optimization capability which is part of the Portfolio Management Advanced sales
package. The various alternatives available to capture and plan operational costs is described in
detail in the section OPEX Optimization in the reference manual Portfolio Management Ad-
vanced.

Defining Application Lifecycles

Application lifecycle management includes the process of identifying and managing conflicts in the lifecy-
cles of an application and its application versions and variants in order to ensure the availability and reliabil-
ity of applications in the enterprise. Each application must have a start and end date and an object state
defined.

 FIGURE: Application object state

The object state specifies the operational status of the application in the enterprise. The object state Active
corresponds to the start and end dates of the application.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 11

 FIGURE: Application lifecycle

It is also possible to define a lifecycle made up of lifecycle phases, although this is optional. The application
lifecycle describes the succession of stages that it goes through. The lifecycle is comprised of lifecycle
phases that describe the application's status of activity or production. In the figure above, the trading ap-
plication Trade*Net has the lifecycle phases Pilot, Production, Limited Production, and Retired. One or more
lifecycle phases may represent the application’s active period. In the example above, the lifecycle phase
Production represents Trade*Net's active period.

You can define the application's lifecycle in the Lifecycle Page View. The Lifecycle Page View page view
displays the application's lifecycles well as the lifecycles of its application versions and the ICT object that
owns the application. In this way, you can identify and manage any conflicts in these lifecycles.

In order to specify lifecycle phases and manage an application's lifecycle, you must have access
to the IT Planning Basic sales package. The methodology and requirements to document and an-
alyze application lifecycles is described in detail in the section Lifecycle Management in the ref-
erence manual IT Planning Basic.

Versioning Applications

Versioning applications describes the transition of one version of an application to the next from the enter-
prise architecture point of view. Each application that you define is actually an application version with its
own defined lifecycle. The application may have predecessor and successor versions, thus providing infor-
mation about the migration plans for the application as well as the evolution of a specific type of business
support or business service.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 12

 FIGURE: Versioned applications assigned to ICT object

The application version will become the successor version when the selected application reaches its end
date. The new application version's start date will be automatically defined to begin one day after the base
application's end date and the new application version's end date will be defined to begin 5 years after its
start date. These dates may be edited as needed. The application version will automatically be assigned to
the same ICT object as the application that it is versioned from. For example, the applications Trade*Net v.
6.0.3 v.1, Trade*Net v. 6.0.3 v.2, and Trade*Net v. 6.0.3 v.3 could be assigned to the ICT object Trade*Net.

The application version will inherit the lifecycle of the base application. You can create a version of a spe-
cific application in the Document Application Functionality and Capture Applications Functionality func-
tionalities.

 FIGURE: Application versions with variants

Applications may also possess application variants to account for the need to localize specific aspects of
the application, such as the information flows needed to integrate the application in a local architecture
environment. Variants are "copies" of an application that model local, functional, or technical differences of
an application. Application variants cannot be versioned. For example, the application Trade*Net 6.0.3,
might have regional variants such as Trade*Net 6.0.3 Var. DACH and Trade*Net 6.0.3 Var. EMEA.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 13

An application variant can be updated whenever the application that it is based on is modified. In this case,
changes made to the base application's information flows, business support, business services, local com-
ponents, and business data can be updated to the application variant. If necessary, an application variant
can be promoted to an application in its own right that is independent of the base application. A new vari-
ant cannot be defined based on an existing application variant.

A variant of an application can be defined in the object profile of the relevant application or in the Docu-
ment Application Functionality functionality. The application variant is considered a descendant of its base
application and is nested below it in the explorer displayed in the Document Application Functionality func-
tionality.

Specifying Local Components for Applications

An application may consist of or need components so that it can function. Typically, components do not
provide functionality to end users but rather provide technical functionality to support the application. For
example, a local component could be a batch procedure, interface component, or an application server.

In contrast to standard components that may be implemented in multiple platforms, for example, a compo-
nent supporting an application is defined as a local component and is not reusable by other applications or
components. Local components are either application-specific - that is, they are explicitly defined for the
application - or they are created based on a standard component that is used for other applications, com-
ponents, or standard platforms. For more information about standard components, see the section Docu-
menting and Defining the Components in Your Enterprise.

 FIGURE: Local component based on a standard component

You can create a local component for the application in the Components Page View, where the local com-
ponent could be explicitly created from scratch or created as a copy of a standard component. When you
create a local component that is derived from a standard component, the standard component's name, ver-
sion, short name, description, and component type is copied to the local component.

Please note that local components are an independent object class and do not inherit the object
class stereotype of the component that they are based on. Object class stereotypes are not sup-
ported for the object class Local Component.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 14

A local component will be displayed below its application in the application explorers in the Alfabet inter-
face. Because some local components that you define will only be used to logically structure the selected
application, you can hide them in application explorers via the Action > Toggle Visibility option in the
Components Page View.

Technical services can also be defined for a local component. Technical services allow the tech-
nical needs required to support the business services provided by an application or local compo-
nent to be documented. Technical services can only be created for local components for which
the Component Type attribute is set to Service. For more information about defining technical
services, see the section Defining the Technical Services Delivered by the Component.

Capturing Operational Business Supports

Business supports help you to understand which IT system is used, where and when it is used, and what it
is used for. A first step to qualify the value of IT with minor effort is to understand an application's opera-
tional business supports. An operational business support describes which business processes are sup-
ported by an application. A simple assignment of applications to the supported business processes reveals
first high-level information about redundancies and gaps. Later, simple impact analysis can be executed in
order to ultimately plan a strategic migration from the as-is architecture to the to-be architecture.

 FIGURE: Business support is the relationship between an application, business process, and organization

An operational business support is the active or planned support that is currently provided as a result of
ongoing development or roll-out activity. The business support consists of three dimensions:

• The application that is providing business support. In addition to applications, organizations may
also be defined as providers of business support in Alfabet.

• The business process that the application supports by providing business services that the
business process requires to fulfill a business function. Some companies refer to domains in their
domain model instead of business processes.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 15

• The organization that is supported by the application. The application typically supports an
organization in its activities to carry out and execute business processes. Some companies refer to
market products instead of organizations.

The operational business support has an object state and typically inherits the lifecycle of the providing
application. Because operational business supports have a lifecycle definition that is independent of the
application's lifecycle definition, the costs of business support can be planned and analyzed separately
from the operational costs of the application.

The operational business support that is or will be provided by an application is defined in the Provided
Business Support Page View for the application.

 FIGURE: Business Support Map Report for the application Trade*Net

Once operational business supports have been defined, you can review the support provided by the appli-
cation. In the example above, the Business Support Map Report Page View provides an overview of the
business processes and organizations supported by the application Trade*Net (orange cell). The reports
displays all operational business support provided by all applications for the set of business processes and
organizations that the application Trade*Net supports. The business support map is an operational IT map
that allows for bottom-up planning of existing approved and budgeted business support. In this case, plan-
ning is done on the level of application versions for a specified number of years. In the context of the busi-
ness support map, a matrix cell with multiple business supports could indicate a potential redundancy in
the architecture whereas a matrix cell without any business supports could indicate a gap in the support of
a business process.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 16

Before you can document the business services that are provided by the business support, you
must first create the business service. To capture business services, you must have access to
the Business Capability Management capability which is part of the Portfolio Management Basic
sales package.

Once you have captured the business support that is provided by applications, you can analyze
the current operational support and plan your enterprise's medium-term and long-term IT. In the
context of an IT strategy, you can roadmap your company's long-term strategic business sup-
port by means of the Business IT Synchronization capability. In the context of a master plan, you
can roadmap the medium-term tactical business supports by means of the Target Architecture
Definition capability. Both capabilities are part of the IT Planning Basic sales package.

Capturing ICT Objects to Understand IT Costs

ICT objects represent a controlling and planning view of the IT architecture. An ICT object (ICT = Infor-
mation and Communication Technology) is an abstract object that represents applications regardless of
their versioning and is a means to plan and control costs related to the application and its infrastructure.
The use of ICT objects is advantageous in that the planner must not initially commit him/herself to a certain
version of the application. By means of the ICT object, portfolio managers can understand the operating
costs of the application. Later, at the stage of detailed planning, the ICT object can be replaced by a spe-
cific concrete version.

In addition to applications, ICT objects may also own components, devices, solution building blocks, vendor
products, and standard platforms that are related to the applications for technical or business reasons, In
this way, an application's technological infrastructure can be budgeted along with the application.

The object classes or their object class stereotypes that may be owned by an ICT object stereo-
types must be configured by your solution designer in the XML object ICTObjectManager. For
more information, see the section Configuring the ICT Object Hierarchy in the reference manual
Configuring Alfabet with Alfabet Expand.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 17

The ICT object is owned by an organization that is usually responsible for the budget of the architecture
elements assigned to the ICT object.

For example, the ICT object Trade*Net could own the following:

• The application Trade*Net 6.0.3

• The standard platforms relevant for the application: Trading Application Server v. 1, Trading Client
v. 1, and Trading Platform v. 2.3

• The deployments Trade*Net v. 6.0.3 #3 EMEA and Trade*Net v. 6.0.3 #3 ROW

The ICT object can be created in the Document ICT Objects Functionality or Capture ICT Objects Function-
ality. If object class stereotypes have been configured by your solution designer for the class ICT Object,
you will first be asked to select the stereotype that the ICT object is based on. The ICT object is then cre-
ated and defined by means of the ICT Object editor.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 18

 FIGURE: ICT Object editor used to create an ICT object

The following data is mandatory and must be defined when an ICT object is created:

• Each ICT object requires a unique name.

• Each ICT object requires planned start and end dates. These dates should be defined so that they
begin before and end after the start/end dates of the applications that they own. The lifecycle
phases of the ICT object can be defined later in the Lifecycle Page View. The lifecycle of the ICT
object as well as all applications, components, standard platforms, etc. that the ICT object owns
will be displayed in the Lifecycle Page View, allowing you to ensure the alignment of the ICT object
and application lifecycles.

• Each ICT object requires an object state.

• Each ICT object requires a release status, which typically expresses agreement to the state of the
documented information.

The following information is optional:

• You should define a short abbreviated name to display on the ICT object in diagrams, matrix
reports, and business graphics.

• You may specify which ICT object category bundles the ICT object. Assigning the ICT object to an
ICT object category allows the ICT objects to be organized and analyzed for costs and architectural
complexity. ICT object categories can be created in the ICT Objects by Category Explorer. ICT
objects can be assigned to the relevant ICT object category in the ICT Objects Page View of the ICT
object category.

• You may assign the organization that owns the ICT object and is responsible for its budget.

• You may assign the ICT object to a functional domain. From a functional point of view, the domain
is the owner of the ICT object.

To capture domains, you must have access to the Business Capability Management ca-
pability which is part of the Portfolio Management Basic sales package.

• You should provide a description of the ICT object so that other users understand the purpose of
the ICT object.

• As the creator of the ICT object, you are automatically defined as the authorized user per default.
The authorized user of the ICT object can be changed in the Authorized Access tab. You can also
define any user groups that should have Read/Write access permissions to the ICT object in the
Authorized Access tab.

Once the ICT object is created, you can assign the applications, components, and standard platforms that it
owns in the Applications Page View, Components Page View, and Standard Platform Page View.

Operational costs can be captured for ICT objects as an alternative to managing IT budgets via
cost centers or application budgets. In order to capture cost information, you must have access
to the Opex Optimization capability which is part of the Portfolio Management Advanced sales
package. The various alternatives available to capture and plan operational costs is described in
detail in the section Methodology: Understanding OPEX Optimization in the reference manual
Portfolio Management Advanced.

 Chapter 2: Application Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 19

Capturing Relevant Peripherals

A peripheral is an element in the IT landscape that is outside of the core scope of the Alfabet solution. A pe-
ripheral typically represents an application that is managed by business partners, such as an EDI gateway
or a B2B marketplace. Peripherals are connected to applications in the IT landscape by means of infor-
mation flows. In contrast to an application, a peripheral’s local components or business services as well as
the details of its technical platform are of no relevance in the Alfabet solution.

A peripheral that is relevant for an application in the Alfabet inventory can be created in the Document Pe-
ripherals Functionality or Capture Peripherals Functionality views. The following data is mandatory and
must be defined when a peripheral is created:

• Each peripheral requires a unique name and version.

• Each peripheral requires planned start and end dates.

• Each peripheral requires an object state.

The following information is optional:

• You should define a short abbreviated name to display on the peripheral in diagrams and business
graphics.

• You should provide a description of the peripheral so that other users understand the purpose of
the peripheral.

• As the creator of the peripheral, you are automatically defined as the authorized user per default.
The authorized user of the peripheral can be changed in the Authorized Access tab. You can also
define any user groups that should have Read/Write access permissions to the peripheral in the
Authorized Access tab.

Once the peripheral has been created, it can be selected as an incoming or outgoing source of an infor-
mation flow as described in the section Defining Information Flows Between Applications, Local Compo-
nents, and Peripherals.

The picture can't be displayed.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 20

Chapter 3: Information Architecture Definition

Please note that a context-sensitive Help is available for each view available in the Information
Architecture capability. You should refer to the Help if you require an explanation about the func-
tionalities and information available in a specific view.

The following information is available:

• Methodology: Understanding the Information Architecture

• Prerequisite: Specifying the Connection Information for Information Flows

• Defining Information Flows Between Applications, Local Components, and Peripherals

• Defining the Business Data That Is Exchanged

• Defining Local Components as Interfaces

• Defining an Interface System

Methodology: Understanding the Information Architecture

The interface logic that is required for the exchange of information is an integral part of the information
architecture. The information architecture describes the information flows that exchange business data
between source and target applications and/or peripherals (application > application, application > periph-
eral, peripheral > peripheral). While information flows may also be defined between components (compo-
nent > component) or devices (device > device), the descriptions below will focus on the information flows
in the application architecture. For each information flow between applications, one application is consid-
ered the source of the information flow and the other application is considered the target of the infor-
mation flow. The number of information flows that an application is associated with helps the application
architect determine the complexity of the application, potential redundancies among applications, and the
effort involved in migrating or replacing an application.

The information architecture can be documented in a number of ways. The method you choose will depend
on the methodology used in your enterprise as well as the level of maturity of your IT architecture.

 FIGURE: Information flow between a source application and target application

The most basic and simple means to document the information flows in the IT architecture is to capture the
transfer of business data exchanged between applications. As shown in the image above, one application is
the source of the information and the other application is the target of the information. The transferred in-
formation is documented as business data. Each applications may be both a source and target of infor-
mation flows. In this case, two information flows exist between the applications, whereby App1 is the

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 21

source and App2 is the destination for InformationFlow1 and App2 is the source and App1 is the destination
for InformationFlow2.

 FIGURE: Information flow between a source local component and target application

Instead of the application, the local component might be the source or target of the business data ex-
change. This might be the case, for example, for an application App2 that communicates with an applica-
tion server (local component) of App1. It is also possible that the business data is exchanged between a lo-
cal component assigned to App1 and a local component assigned to App2.

 FIGURE: Information flow between interfaces

A more complex situation is if an information flow exchanges business data between the interfaces of two
applications, as shown in the figure above. An interface is the technical component associated with an in-
formation flow that realizes the technical compilation necessary for the data exchange. In this case, local
components are specified as the source and target interfaces that enable data transfer. Please note that
the source and target interfaces must be defined as components or local components in the platform of
the respective application.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 22

 FIGURE: Information flow via an interface system

In some cases, the exchange of data is accomplished using a dedicated communication system, such as an
EAI bus, which can be modeled by an information flow. The system is referred to as an interface system
and constitutes the architecture elements that transport and transform business data associated with in-
formation flows. In this case, the information flows between applications are realized through concrete in-
terface systems which are typically embedded in the application’s platform. Enterprise Application Integra-
tion platforms, message queues, request brokers, bus systems, or service orchestrators are typical exam-
ples of interface systems.

Prerequisite: Specifying the Connection Information for Infor-
mation Flows

One aspect that can be documented about an information flow is the connection information. The following
data about the information flow's connection can be captured in the Information Flow editor.

• The connection type describes the mode of transfer used by a specific information flow to transfer
business data between the two associated applications or their respective components. Examples
include batch and online.

• The connection method describes the method of transfer used by a specific information flow to
transfer business data between the two associated applications or their respective components.
Examples include TCP/IP, file transfer, message queue.

• The connection frequency describes how often a specific information flow is used to transfer
business data between the two associated applications or their respective components. Examples
include daily, monthly.

• The connection data format describes the data format used for the transfer of business data via a
specific information flow. Examples include ASCII, XML.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 23

The values that fill the Connection Data Format, Connection Data Format, Connection
Method, Connection Type fields in the Information Flow editor must first be defined in the
Reference Data functionality before you or other users can define the connection information.
This is described in detail in the chapter Configuring the Connection Data for Information Flows
in the reference manual Configuring Evaluation and Reference Data in Alfabet.

Defining Information Flows Between Applications, Local Compo-
nents, and Peripherals

Information flows are created in the Information Flows Page View of the application, peripheral, or local
component that is either the source or target of the information flow.

The following data can be defined when an information flow is created:

 FIGURE: Creating an information flow targeting a local component

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 24

• The application that you are currently defining will be automatically entered in the From or To
field, depending on whether you have selected the option to create an incoming or outgoing
information flow. The syntax for the information flow will be displayed in the Information Flows
Page View as <SourceApplication> >> <TargetApplication> or if the case may be
<SourceApplication> >> <TargetApplication (LocalComponent)>.

• You should define a short abbreviated name to display on the information flow in diagrams and
business graphics.

• You must define the planned start and end dates specifying when the information flow will be in
production. When you create a new information flow, the information flow’s start date is, by
default, the earliest date defined for either the source or target component and the end date is, by
default, the latest date defined for either the source or target component. You may edit the
information flow’s start and end dates, but the dates must fall within the range of the lifecycle
dates for the source and/or target components. If the dates are not aligned with the source or
destination applications, the date cell will be colored red in the view.

• You may be able to define the object state of the information flow. Please note the following:

• The information flow's object state may only be defined as active if its source and target
applications also have an active object state.

• The information flow must have a retired object state if either the source or target application
has a retired state.

• You should define a release status, which typically expresses agreement to the state of the
documented information.

• You may specify the connection information for the information flow if values have been
configured for the Connection Data Format, Connection Data Format, Connection Method,
Connection Type fields in the Reference Data functionality. This is described in detail in the
chapter Configuring the Connection Data for Information Flows in the reference manual
Configuring Evaluation and Reference Data in Alfabet.

• You should provide a description of the information flow so that other users understand the
purpose of the information flow.

• As the creator of the information flow, you are automatically defined as the authorized user per
default. The authorized user of the information flow can be changed in the Authorized Access
tab. You can also define any user groups that should have Read/Write access permissions to the
information flow in the Authorized Access tab.

Defining the Business Data That Is Exchanged

Business data are exchanged between applications and their technical components by means of infor-
mation flows. They are processed in the business services that are provided by the applications/compo-
nents.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 25

A business data is the concrete instantiation of a business object, which represents an abstract entity that
is relevant to the enterprise's business domain. A business object is typically not versioned and represents,
for example, customer, transaction, target market, statistical data, stock trade, future trade, etc. Business
data, on the other hand, represents the concrete instances that are used by an application and typically are
versioned. A business object Future Trade, for example, could have the business data Future Trade v. 1, Fu-
ture Trade v. 2, Future Trade 2016, etc.

You can capture the business data that is transferred by an information flow in the Business Data Page
View in the information flow's object profile. You can also capture the business data that an application or
local component operates on in the Business Data Page View in the object profile of the respective applica-
tion or local component.

When you create the business data, you will first be asked to select the business object that it instantiates.
The name of the business data will be the same as the name of the selected business object, but this can
be changed. You must also define a version number for the business data.

Before you can document the business data that is transferred by an information flow, you must
first create the business object that the business data is associated with or make sure that a
business object exists that your new business data can be based on. To capture business ob-
jects, you must have access to the Information Portfolio Governance capability which is part of
the Portfolio Management Basic sales package.

Once you have captured the business data that is exchanged by applications, you can specify
and analyze the business data usage and think about consolidating information objects and de-
veloping and establishing information sourcing strategies which is a focus of the Information
Portfolio Governance capability.

Defining Local Components as Interfaces

An information flow can exchange business data between the interfaces of 2 applications. An interface is
the technical component associated with an information flow that realizes the technical compilation nec-
essary for the data exchange. In this case, local components are specified as the source and target inter-
faces that enable data transfer. The source and target interfaces must be defined as components or local
components in the platform of the respective application.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 26

The interface can only be defined if an application is the source/target of the information flow. It cannot be
defined if a local component is the source/ target of the information flow. In other words, the local compo-
nent is specified as the interface for the information flow but not the source or target of the information
flow.

 FIGURE: Information flow between interfaces

To define the source and target interfaces of an information flow, you must first ensure that the relevant
local component that will be defined as the interface is assigned to the source application and the target
application of the information flow in the Components Page View of the relevant applications. The infor-
mation flow's interfaces can then be defined in the Interfaces Page View in the information flow's object
profile.

Defining an Interface System

You can model an interface system as middleware for an information flow if, for example, the exchange of
data is accomplished using a dedicated communication system such as an Enterprise Application Integra-
tion system or bus technology. The interface system is the collection of architecture elements that
transport and transform business data associated with information flows. The information flows between
applications are realized through concrete interface systems which are typically embedded in the applica-
tion’s platform. Enterprise Application Integration platforms, message queues, request brokers, bus sys-
tems, or service orchestrators are typical examples of interface systems.

 Chapter 3: Information Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 27

Both applications and components may model an interface system. An interface system may provide busi-
ness support in its own right, in which case it should be modeled as an application.

Alternatively, the interface system may provide technical support for the exchange of information, in which
case it could be modeled as a component.

An interface system can be derived from a component, application, or local component of the component
or application. If an interface system is based on a component or local component of the type Service, you
can specify the technical services and their technical service operations in order to specify the service calls
that are relevant for the interface system. the interface systems can be sequenced in order to capture the
order that the services must be called between the source and target interfaces.

The information flow's interface system is defined in the Interfaces Page View in the information flow's ob-
ject profile. The application or component that the interface system is based on must already be defined in
the database.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 28

Chapter 4: Technology Architecture Definition

The technology architecture defines the technical view of the enterprise architecture and describes the
software and hardware components, technical infrastructure, and the associated standards that are imple-
mented. Components and standard platforms are the core elements of the technical architecture from an
application-centric view.

Please note that a context-sensitive Help is available for each view available in the Technology
Architecture Definition capability. You should refer to the Help if you require an explanation
about the functionalities and information available in a specific view.

The following information is available:

• Methodology: Understanding the Technical Architecture

• Components in the Technical Architecture

• Standard Platforms in the Technical Architecture

• Deployments in the Technical Architecture

• Understanding Governance and Responsibility for Components

• Documenting and Defining the Components in Your Enterprise

• Defining the Component's Lifecycle

• Versioning the Component

• Defining the Technical Services Delivered by the Component

• Defining Platform Templates and Standard Platforms

• Defining the Platform Architecture for an Application or Component

• Defining the Operational Deployment of an Application, Component, or Standard Platform

• Defining and Managing Technical Networks and Deployments

Methodology: Understanding the Technical Architecture

An enterprise technical architecture defines the technical view of the enterprise architecture and describes
the enterprise's software and hardware components, its platforms and associated standards, such as plat-
form templates and standard platforms, and the deployment architecture.

Components in the Technical Architecture

Unlike a local component which is used by a specific application, a standard component is a reusable block
of functionality that is relevant for the enterprise's business operations or infrastructure, or to provide
technical services. Standard components may be implemented in Alfabet as follows:

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 29

1) A standard component can be used to derive a local component. In this case, the attributes of the
standard component are copied to the local component. However, the local component is an
independent entity that can be modified in the context of the application that it supports.

2) A standard component for which the Component Type attribute is set to Service can deliver
technical services that are necessary to support requested business services.

3) A local component or standard component can be assigned to an application's platform or a
component's platform. In the context of the application/component platform, the component is
considered a platform element. The platform element can have a lifecycle that is different from
that of the standard component.

4) A standard component can be assigned to a standard platform. In the context of the standard
platform, the component is considered a standard platform element. The standard platform
element can have a lifecycle that is different from that of the standard component.

Standard Platforms in the Technical Architecture

Not only are components implemented in platforms, a component itself, like an application, may also oper-
ate on a platform made up of other hardware and software components necessary to run the component. A
platform describes the technical architecture in terms of the assembly of standard and local components
that a specific application or component runs on. Every platform in Alfabet is based on a platform template
organized in a matrix-like structure with platform layers and platform tiers defining the axes. The structure
reflects the partitioning of the platform in terms of distribution across multiple hardware and software
groups.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 30

To support standardization, a standard platform may be embedded in the platform of an application or
component. A standard platform is a configured platform made up of standard platform elements that ref-
erence standard components. Standard platforms allow you to bundle technology components in order to
improve interoperability, performance, scalability, and reliability. Thus, standard platforms serve as a kind of
blueprint architecture or architecture pattern in which platform configurations are used as building blocks
to create and structure more complex standard platforms.

Standard platforms have versions and lifecycles and can even consist of other standard platforms. Stand-
ard components can be developed and managed independently of the standard platforms and applications
that use them and the lifecycle of a standard component can be different from its lifecycle in the context
of a standard platform or application platform.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 31

Deployments in the Technical Architecture

In addition to specifying platforms, specification of the technical architecture also includes the infrastruc-
ture necessary to deploy applications, components, and standard platforms. A deployment specifies the
logical set of installed elements that constitute the instantiation of an application, component, or standard
platform. In the context of the deployment, stack elements specify the accepted guideline for the physical
elements that are permissible and planned for the installation, and deployment elements are the actual op-
erationally installed elements which usually are imported from a CMDB. The deployment element also iden-
tifies the device that the respective architecture element is installed on. The specification of networks and
their routers ensures that the transfer of data between deployments is viable.

Operational costs of deployments can be captured in order to understand application costs. In
order to capture cost information, you must have access to the Opex Optimization capability
which is part of the Portfolio Management Advanced sales package. The various alternatives
available to capture and plan operational costs is described in detail in the section OPEX Optimi-
zation in the reference manual Portfolio Management Advanced.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 32

Understanding Governance and Responsibility for Components

A number of governance concepts are implemented in the Technology Architecture Definition capability:

• Authorized User: Each component has an authorized user. An authorized user has primary
responsibility for the component and thus has Read/Write access permissions to it. Users may also
be assigned to authorized user groups. All users assigned to an authorized user group that has
been defined for a component will have Read/Write access permissions to the component.

• Roles: A role defines the functional relationship or responsibility that a user or organization has to
a component. Roles describe responsibilities but they do not authorize access permissions to the
component in Alfabet.

• Object Class Stereotypes: Object class stereotypes may be configured by your solution designer
for the object class Component. This allows for a different governance approach between different
kinds of components such as, for example, Software Components and Hardware Components. If
object class stereotypes are configured for the object class Component, each stereotype may
capture a specified set of attributes, reference data, and class configurations as well as implement
a different governance approach.

Please note that local components are an independent object class and do not inherit
the object class stereotype of the component that they are based on.

• Mandates: Components may be managed in a federated architecture. Mandates are typically
configured if object class stereotypes have been configured. By means of a federated
architecture, it is possible to specify the visibility of individual components in the Alfabet interface
for specific users.

• Component Groups: Components may be structured in one or more component groups. Each
component group has an authorized user and may have one or more authorized user groups
assigned to it. The authorized users of a component group will have access permissions to all
components in the component group. A component may be assigned to multiple component
groups.

• Component Categories: A component category bundles and classifies content-specific
components and allows the components to be hierarchically structured. A component may be
assigned to only one component category.

• Component Catalogs: Component catalogs allow the level of standardization of components to
be assessed. A component catalog typically refers to functional, geographical, or organizational
sub-entities. A component may be assigned to multiple component catalogs.

To capture component groups, component categories, and component catalogs, you must have
access to the Technology Portfolio Governance capability which is part of the Portfolio Manage-
ment Basic sales package.

Objects in Alfabet are managed by various access permission concepts. For an over-
view of the access permission and governance concepts in Alfabet, see the section
Understanding Access Permissions in Alfabet in the reference manual Getting Started
with Alfabet.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 33

Documenting and Defining the Components in Your Enterprise

Standard components are captured in the Document Components Functionality and Capture Components
Functionality functionalities. These views allow components to be documented and defined in a quick and
efficient manner and are particularly useful for users with data entry responsibilities. All components cre-
ated in these views are considered "standard" components. Standard components are simply referred to as
"components" in the Alfabet user interface as well as the documentation.

Please note that local components constitute an independent object class. Object class stereo-
types defined for the object class Component do not apply to local components. Object class ste-
reotypes are not supported for local components.

If object class stereotypes have been configured by your solution designer for the class Component, you
will first be asked to select the stereotype that the component is based on. The component is then created
and defined by means of the Component editor.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 34

 FIGURE: Creating a component in the Component editor

The following data is mandatory and must be defined when a component is created:

• Each component requires a unique name and version number for the component. Components can
be versioned as needed. This is described in more detail in the section Versioning the Component.

• Each component requires planned start and end dates specifying when the component will be in
production. The lifecycle phases of the component can then be defined later. This is described in
more detail in the section Defining the Component's Lifecycle.

• Each component requires an object state. In the example above, a default object state has been
configured that is automatically defined. This can be changed however via the Change State
button available in the component's object profile/object cockpit.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 35

• Each component requires a release status, which typically expresses agreement to the state of the
documented information. In the example above, a default release status has been configured that
is automatically defined. This can be changed in the editor.

The following information is optional:

• You should define a short abbreviated name to display on the component in diagrams and platform
matrices.

• You may define a component type. Please note that if the component provides technical services,
you must select Service in the Component Type field in order to document the technical services.
Technical services allow the technical needs required to support the business services provided by
an application, component to be documented. Technical services can be created for local
components for which the Component Type attribute is set to Service. For more information
about defining technical services, see the section Defining the Technical Services Delivered by the
Component.

• You may specify which ICT object owns the component. For more information about capturing ICT
objects, see the section Capturing ICT Objects to Understand IT Costs.

• If relevant, you may specify the vendor product that the component is derived from or associated
with. For example, the components Oracle 11i Server, Oracle 11i Client, and Oracle 11i OCL may be
derived from the vendor product Oracle RDBMS. You can also define the vendor that supplies the
vendor product.

To capture vendor products and vendors, you must have access to the Contract and
Vendor Management capability which is part of the Portfolio Management Advanced
sales package.

• If relevant, you may assign the component to a functional domain or business capability. From a
functional point of view, the domain or capability is the owner of the component.

To capture domains and capabilities, you must have access to the Business Capability
Management capability which is part of the Portfolio Management Basic sales package.

• You should provide a description of the component so that other users understand the purpose of
the component.

• As the creator of the component, you are automatically defined as the authorized user per default.
The authorized user of the component can be changed in the Authorized Access tab. You can
also define any user groups that should have Read/Write access permissions to the component in
the Authorized Access tab.

Defining the Component's Lifecycle

Component lifecycle management includes the process of identifying and managing conflicts in the lifecy-
cles of a component and its component versions in order to ensure the availability and reliability of compo-
nents in the enterprise. Each component must have a start and end date and an object state defined. The
object state specifies the operational status of the component in the enterprise. The object state Active
corresponds to the start and end dates of the component.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 36

It is also possible to define a lifecycle made up of lifecycle phases, although this is optional. A component’s
lifecycle describes the succession of stages that it goes through. The lifecycle is comprised of lifecycle
phases that describe the component's status of activity or production (such as Evaluation, Pilot, Core, De-
cline, Restrict). The lifecycle definition also includes the definition of a lifecycle phase that represents the
component’s active period, which corresponds to its start and end dates.

You can view and define the lifecycle of a component in the Lifecycle Page View of the relevant compo-
nent. The Lifecycle Page View displays the lifecycle of the component you are working with as well as the
lifecycle of the ICT object that owns the component and any other versions of the component. In this way,
you can review the lifecycles of the component's versions and identify and manage any conflicts in these
lifecycles.

In order to specify lifecycle phases and manage a component's lifecycle, you must have access
to the IT Planning Basic sales package. The methodology and requirements to document and an-
alyze lifecycles or architecture elements is described in detail in the section Lifecycle Manage-
ment in the reference manual IT Planning Basic.

Versioning the Component

Versioning components describes the transition of one version of an component to the next from the en-
terprise architecture point of view. Each component that you define is actually a component version with
its own defined lifecycle. The component may have predecessor and successor versions, thus providing
information about the migration plans for the component.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 37

The component version will become the successor version when the selected component reaches its end
date. The new component version's start date will be automatically defined to begin one day after the base
component's end date and the new component version's end date will be defined to begin 5 years after its
start date. These dates may be edited as needed. The component version will automatically be assigned to
the same ICT object as the component that it is versioned from. The component version will not inherit the
lifecycle of the base component. The lifecycle must be explicitly defined for the new component version.
You can create a version of a specific component in the Document Components Functionality and Capture
Components Functionality functionalities.

Defining the Technical Services Delivered by the Component

A technical service is a service provided by a component in order to fulfill technical needs that are neces-
sary to support business services provided by the application or component. The technical service typically
defines technical service operations that support the technical realization of the business functions sup-
ported by the business services.

Object class stereotypes may be configured for the classes Technical Service, Technical Ser-
vice Operation, and Technical Service Operation. In this case, only certain technical service
operations will be relevant for a particular technical service, and only certain technical service
operation methods will be relevant for a particular technical service operation. For more infor-
mation about the configuration and mapping of the technical service stereotypes, see the sec-
tion Configuring Object Class Stereotypes for Technical Services in the reference manual Con-
figuring Alfabet with Alfabet Expand.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 38

Technical services can be defined for components and local components for which the Component Type
attribute is set to Service. When a local component of the type Service is embedded in the architecture of
an application or another component (of the type Infrastructure or Business, for example), the technical
service operations of the embedded component can be mapped to the business services provided by the
application or the local component.

There are a number of means to capture the technical services in your enterprise. You can either manually
document them or import them via one of the following mechanisms:

• Manually create technical services for a standard component or local component for which the
Component Type attribute is set to Service. The Technical Services Page View is only available in
the object profile of the component/local component if the Component Type attribute is set to
Service. When you define technical services for the component, you must define a name, version
number and start and end dates of the technical service. By defining technical service operations
for the technical service, you can detail how the technical service is to be provided by the
component. Technical service operations are defined in the Technical Service Operations Page
View of the technical service.

The technical service operations can later be assigned to the business services that are
provided by the application that is supported by the local component providing the
technical service. In order to associate technical service operations with a business ser-
vice, business services must first be defined. To capture business services, you must
have access to the Business Capability Management capability which is part of the
Portfolio Management Basic sales package.

• Import technical services from assets in operational repositories such as CentraSite, webMethods
API Portal, and webMethods API Gateway to the Alfabet database. Once the technical services are
in the Alfabet database, they can be periodically updated and synchronized with the
corresponding assets in the operational repository. Technical services can be created based on
assets in a configured operational repository in the Service Registry Services Page View. When a

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 39

technical service is created based on an asset in an operational repository, an object of the class
Technical Service will be in the Alfabet database. The name of the technical service created
based on an asset in an operational repository will have the same name as the asset in the
operational repository. All relevant properties available both in the asset and in Alfabet are
automatically mapped. Interoperability with the operational repositories CentraSite, webMethods
API Portal, and webMethods API Gateway will only be available if a valid configuration and
connection is available. For more information about configuring interoperability with the relevant
operational repositories, see the reference manual API Integration with Third-Party Components.

• Technical services may be created and managed based on WSDL files as well as OpenAPI
Specification Swagger files in the Technical Services Page View.

Defining Platform Templates and Standard Platforms

The definition of platform templates and standard platforms allows you to ensure standardization in terms
of the specification and documentation of platforms in the enterprise.

A platform template is organized in a matrix-like structure and defines a standard set of platform layers and
platform tiers. It serves as a reference grid for placing components in standard platforms and platforms
specified for applications and components. A platform template structures the platform in two dimensions:

• Platform tiers make up the horizontal axis and typically represent groups of components in terms
of functionality that can or must be deployed on separate physical machines in order to
accomplish better modularization and scalability. Usually, each platform tier communicates only
with the tiers next to it. Typically, a four-tier architecture would comprise a database server tier, an
application server tier, a Web server tier, and a client server tier.

• Platform layers make up the vertical axis and typically represent groups of components based on
the level of abstraction of services that components within a layer provide. Usually, a platform
layer depends on the layers below it. A typical layered architecture could comprise a business
layer, where business logic resides, a software infrastructure layer, where operating system and
infrastructure services reside, and a hardware layer.

A platform template may have as many tiers and layers as required in your enterprise. Multiple platform
templates can be defined in your enterprise but only one platform template may be assigned to a standard
platform or application/component platform. Platform templates are created and structured with platform
tiers and layers via the Platform Templates Explorer. One platform template can be defined as the default

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 40

template. In this case, it will be automatically assigned to a new application platform. If necessary, the de-
fault platform template assigned to an application/component platform can be changed by the user defin-
ing the platform.

Once a platform template has been configured, you can establish blueprints for the technologies to be used
in the enterprise's platform by creating standard platforms.

A standard platform is a platform that is defined outside of the scope of a concrete application or compo-
nent. Much like any platform, the standard platform is based upon a platform template with its defined plat-
form tiers and platform layers. Standard platforms can be used to represent technical platforms (for exam-
ple, "Standard Windows Desktop") as well as business platforms (for example, "Standard Alfabet Platform"
or "Standard SAP BW Platform").

Standard components are assigned to the standard platform and represent the technology components
that constitute the platform. Each component embedded in the standard platform is considered a standard
platform element. The lifecycle of the standard platform element can be different from its lifecycle as a
standard component. 2015There are two methods to assemble a complex standard platform:

• Add individual standard platform elements assembled in an existing standard platform and/or
individual components, thus structuring the selected standard platform component by
component. In this case, the standard platform elements allow for a detailed description of the
standard platform architecture. This method should be used to assemble the standard platform if
the communication between the components is relevant.

• Add an existing standard platform as an entire package including all of its standard platform
elements derived from components to the selected standard platform. This method should be used
if all relevant communication between the components takes place within the standard platform.
Please note however that only the first hierarchy level of standard platforms embedded in the
selected standard platform will be visualized in the Platform Diagrams Page View. Any additional
standard platforms embedded at lower levels in the platform hierarchy will not be added to the
diagram.

Once a standard platform has been defined, it can be embedded in an application/component platform,
thus filling the platform with approved standard components. The standard components that are not rele-
vant may be removed from the application/component platform. By means of standard platforms, you can
assess the overlap and degree of standard compliance of application/component platforms with the com-
pany's guidelines.

The following steps are necessary in order to define a standard platform:

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 41

• The standard platform must first be created in the Standard Platforms Page View of a standard
platform category. Please note that object class stereotypes may be configured for the object
class Standard Platform in your enterprise. If standard platform stereotypes are configured for
your enterprise, each standard platform stereotype may capture a specified set of attributes,
reference data, and class configurations, and implement a different governance approach.

• The standard platform must then be assembled by bundling technology components in the
Standard Platform Elements Page View of a standard platform.

• The standard platform can then be amended and further specified by adding or removing
individual standard platform elements in the Standard Platform Architecture Page View of a
standard platform.

• The Standard Platform Usage Page View provides an overview of the application platforms as well
as the standard platforms in which a selected standard platform is embedded.

Defining the Platform Architecture for an Application or Compo-
nent

A platform describes the technical architecture in terms of the assembly of local components that a spe-
cific application or component runs on. This assembly is based on a platform template and ideally has
standard components from standard platforms incorporated in it.

A platform is created for an application or component in the Technical Platform Elements Page. If a default
platform template has been specified in your enterprise, the application platform will be automatically cre-
ated with the default platform template. Each component embedded in the application/component plat-
form is considered a platform element. The lifecycle of the platform element can be different from its
lifecycle as a standard component. Any qualitative aspect of local components as well as information about
business services, information flows, or business data is disregarded in the context of a platform.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 42

There are two methods to assemble a complex platform:

• Add individual platform elements assembled in an existing standard platform, thus structuring the
selected platform component by component. In this case, the platform elements allow for a
detailed description of the platform architecture. This method should be used to assemble the
platform if the communication between the components is relevant.

• Add an existing standard platform as an entire package including all of its platform elements
derived from components to the selected platform. You should only add standard platforms that
are based on the same platform template. This method should be used if all relevant
communication between the components takes place within the platform. Please note however
that only the first hierarchy level of standard platforms embedded in the selected platform will be
visualized in the Platform Diagrams Page View. Any additional standard platforms embedded at
lower levels in the platform hierarchy will not be added to the diagram.

The standard components assigned to the application/component will be automatically displayed in the
relevant platform tier and platform layer in the platform matrix displayed in the Platform Architecture Page
View. In this view, you can assign additional components to the platform.

Defining the Operational Deployment of an Application, Compo-
nent, or Standard Platform

Once applications, components, or standard platforms have been defined, you can capture the infrastruc-
ture necessary to deploy them. The deployment is the logical set of installed elements that constitute one
instantiation of the application, component, or standard platform. It is possible to specify a simple deploy-
ment or, optionally, to define a detailed stack. Multiple stacks and deployments can be specified for each
application, component, or standard platform.

Please note that although stacks and deployments can be defined for applications, components,
and standard platforms, for the sake of simplicity the following documentation will refer only to
application and stacks and deployments. The process for creating stacks and deployments for
components and standard platforms is similar to applications.

An application’s stack is an operational refinement of that application and thus formulates the planned
guideline that should be installed. As such, it typically describes a refinement of the application platform
and the physically installed infrastructure for the application’s physical deployment. In the case of compo-
nents based on vendor products, the stacks could define patch level release versions provided by the ven-
dor.

Stacks may be hierarchically organized and contain multiple sub-stacks, thus allowing for various levels of
operationalization to be refined and further restricted. The stacks at the higher levels of the stack hierarchy
may be more broadly defined and offer a number of options for the proposed deployment. Each level of
sub-stack you define allows you to define the stack in more granularity, thus making the stack more con-
crete for the operational deployment. For example, a first-level stack could address operating system com-
patibility between UNIX and Windows in general. The next level of stacks may differentiate between various
UNIX dialects or operating system versions. Each stack in the hierarchy may include or exclude elements
that have or have not been used in the platform.

A stack is based on the platform architecture of the application's platform. All platform elements in the
platform architecture are added to the stack architecture.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 43

The stack is thus made up of stack elements that either reference the application's local components, the
components in the application platform, or stack configuration items, which are typically technical aspects
of the application deemed unimportant for strategic planning purposes but relevant for the physical instal-
lation. Stack configuration items themselves may reference a component. Typical examples for stack con-
figuration items are install shields, installation scripts, job queues, etc.

A stack is created for the application in the Stacks Page View. When you define the stack, you must define
the stack's name, release number, the object state of the stack, and the start and end dates. The stack will
automatically include all platform tiers and platform layers defined for the application's platform as well as
all platform elements. Each platform element has a corresponding stack element in the stack. You can re-
fine the stack by specifying the inclusion of stack elements and stack configuration items in the Stack Ele-
ments Page View. The Stack Architecture Page View displays the platform tiers and platform layers as-
signed to the stack as well as all stack elements and any stack configuration items that have been defined
for the stack.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 44

A deployment is the logical set of installed elements that constitutes one instantiation of the application.
Once a stack has been defined, you can specify the deployment of the stack in the Stack Deployments
Page View available for the stack or the Deployments Page View of the application being deployed.

Whereas stack elements specify the accepted guideline for the physical elements that are permissible and
planned for the installation, deployment elements are the actual operationally-installed elements which
usually are imported from a CMDB. Ideally, each stack element should be associated with one deployment
element. The differentiation between stack elements and deployment elements allows the enterprise to
understand whether the actual installation (via deployment elements) corresponds to the planned and ap-
proved installation (defined via stack elements). The deployment elements identify all components in the
deployment and the devices that they are installed on.

You can specify the details of the deployment in the Deployment Structure Page View. For an application
deployment, for example, the following deployment elements are included in the view:

• the application being deployed

• the stack elements referencing local components and components assigned to the application
platform

• the stack configuration items assigned to the stack

In the Deployment Structure Page View, you must explicitly deploy each deployment element that is rele-
vant for the deployment. When you deploy a deployment element, you must specify the physical device
that it runs on. The device represents the piece of hardware that implements the application. Only physical
devices can be assigned to deployment elements. Physical devices may be clustered via a logical device.

Devices are created in the Document Devices Functionality and Capture Devices Functionality functionali-
ties. When you define the device, you must define the device's name, its version number, the object state of
the device, and the start and end dates. You can also assign the device to an ICT object for budgetary and

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 45

planning purposes as well as the location where the device is deployed. The devices are then assigned to
specific locations in the enterprise. Locations must first be specified in the Locations Explorer.

Next you can capture and visualize information flows between the application deployments in order to bet-
ter understand the physicality of data flows or where data is destined to be processed. The Information
Flows Page View of the deployment displays all information flows and platform information flows defined
for the deployed application. In order to ensure that the information flows are included in the deployment,
you must explicitly deploy the relevant information flows that should be deployed for the application de-
ployment.

Please note that an application deployment must be defined for both the source and target applications of
the information flow in order to deploy the respective information flow. All deployed information flows will
be displayed in the Deployment Diagrams Page View. If your enterprise captures networks, you will be able
to review whether the networks are connected via network routers so that the physical infrastructure is
available in order to deploy the information flows. This is described in the section Defining and Managing
Technical Networks and Deployments.

Defining and Managing Technical Networks and Deployments

Documenting and defining the technical networks in your enterprise will help you to achieve architectural
efficiencies, strengthen application security, and build a foundation for IoT solution development. When
capturing the infrastructure of your deployments, it is advisable to document and manage the technical
networks as part of the application deployment strategy. This includes capturing the physical networks rel-
evant for the enterprise and ensuring that the information flows between deployments are physically pos-
sible.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 46

A network is the system of devices and other physical networks that are connected. For each network, sub-
ordinate networks can be defined as well as the network devices assigned to them. The definition of the
network includes an object state, start date and end date, and the spatial scope of the network (such as
WLAN, LAN, Internet, etc.). Networks are created in the context of the Networks Explorer. All devices that
are relevant to the network should be assigned to the network in the Network Devices Page View

Network routes represent the communication between networks as well as networks and devices. The net-
work routes are based on physical devices of the type Router. The routers must first be assigned to the
network in the Network Devices Page View and then explicitly specified as the device providing the con-
nection between the source network and target network/device in the Network Routes Page View. The al-
lows you to review the overall network infrastructure. In the Network Diagrams Page View, red arrows rep-
resent the network routes that have been defined between networks as well as between networks and de-
vices. The blue arrows visualize the assignment of devices to a network.

 Chapter 4: Technology Architecture Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 47

Finally, the Deployment Diagrams Page View available for a deployment allows you to check whether the
network infrastructure supports the enterprise's deployments. All deployed information flows that are rele-
vant to a deployment should have the same device defined to deploy their source and target objects as the
device defined as the router for the network route. You can review whether network routes are available for
the deployed information flows by executing the Check Deployment Connectivity function in the Deploy-
ment Diagrams Page View. The information flows between the deployments will be displayed green if net-
work routes are defined and support the information flows. If no router connection is defined and the infor-
mation flows cannot be deployed, the information flows will be highlighted red.

 Chapter 5: Business Process Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 48

Chapter 5: Business Process Definition

Business processes represent a business-driven governance structure that supports the alignment of the
business and IT as well as a means to analyze, manage, and plan the IT portfolio. Business processes de-
scribe how things are done in order to achieve the enterprise's business objectives.

Please note that a context-sensitive Help is available for each view available in the Business Pro-
cess Definition capability. You should refer to the Help if you require an explanation about the
functionalities and information available in a specific view.

The following information is available:

• Methodology: Understanding Business Process Models

• Understanding Governance and Responsibility for Business Process Models

• Defining the Business Process Models in Your Enterprise

• Documenting and Defining the Business Processes

• Specifying Business Process Model Variants

Methodology: Understanding Business Process Models

The business process model describes the hierarchy of business processes in the enterprise. A business
process is a set of activities that represent work required to achieve a business objective. Typical business
processes include marketing services, selling products, delivering services, distributing products, invoicing
for services, and accounting for money received. A business process rarely operates in isolation. Other
business processes will depend on it and it will depend on other business processes.

 Chapter 5: Business Process Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 49

 FIGURE: Example of a business process model in Alfabet

A business process may have as many levels of subordinate business processes as needed, although three
levels should be sufficient in the business process hierarchy to describe the value chain. Business pro-
cesses at the top level are primarily abstract and present an overview of the process hierarchy. The busi-
ness process hierarchy becomes more detailed on the level of the subordinate business processes. At the
lowest level, a business process may reference one or more business functions by means of business ser-
vice requests. The alignment of the business and IT is typically planned at a specific level in the business
process hierarchy (for example, at the third level in the business process hierarchy).

Each business process may have multiple business process variants, which allow specific stakeholders to
analyze business process execution at a more granular level. For example, the high-level business process
Sales Order Management can have business process variants defined for the specific process execution
flows for the sectors Automobile and Motorcycle. It is recommended that the business process variants are
defined for the leaf-level business processes in the business process hierarchy.

Multiple business process models may be defined to allow for variations over time or over organizational
entities.

 Chapter 5: Business Process Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 50

Please note the following:

• To capture business functions and business service requests, you must have access to
the Business Capability Management capability which is part of the Portfolio
Management Basic sales package.

• To plan changes to the business process model, you must work with solution business
process models. A solution business process models allow you to plan changes by
means of "shadow" objects - solution business processes that are copies of the real
business processes. When the amended solution business process model is checked in
to the inventory, it will overwrite the existing business process model. To work with
solution business models, you must have access to the Scenario Management capability
which is part of the IT Planning Complete sales package.

Understanding Governance and Responsibility for Business Pro-
cess Models

A number of governance concepts are implemented in the Business Process Definition capability.

• Authorized User: Each business process model and business process has an authorized user.
These may be different users. An authorized user has primary responsibility for the business
process and thus has Read/Write access permissions to it. A business process variant inherits the
access permissions of the business process that it is based on. Users may also be assigned to
authorized user groups. All users assigned to an authorized user group that has been defined for a
business process will have Read/Write access permissions to the business process.

• Mandates: Business process models and business processes may be managed in a federated
architecture. Mandates are typically configured if object class stereotypes have been configured.
By means of a federated architecture, it is possible to specify the visibility of individual business
processes in the Alfabet interface for specific users.

• Roles: A role defines the functional relationship or responsibility that a user or organization has to
a business process model or business process. Roles describe responsibilities but they do not
authorize access permissions to the business process in Alfabet.

Objects in Alfabet are managed by various access permission concepts. For an overview of the
access permission and governance concepts in Alfabet, see the section Understanding Access
Permissions in Alfabet in the reference manual Getting Started with Alfabet.

Defining the Business Process Models in Your Enterprise

The business process model must first be created at the root node of the Business Processes Explorer be-
fore business processes can be captured. Multiple business process models may be defined to allow for
variations over time or over organizational entities.

• You must define a unique name and version number for the business process model.

 Chapter 5: Business Process Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 51

• You should provide a description of the business process model so that other users understand its
purpose.

• As the creator of the business process model, you are automatically defined as the authorized user
per default. The authorized user of the business process model can be changed in the Authorized
Access tab. You can also define any user groups that should have Read/Write access permissions
to the business process model in the Authorized Access tab.

Documenting and Defining the Business Processes

Business processes at the top level of the business model hierarchy are captured in the Business Pro-
cesses Page View of the business model hierarchy. These business processes should be described broadly.
The business process hierarchy becomes more detailed on the level of the subordinate business processes.
Each subordinate business process is created in the Sub-Processes Page View of its parent business pro-
cess. The business process is created and defined by means of the Business Processes editor.

• Each business process requires a unique name and a short name to display on the business
process in diagrams and matrices.

• Each business process requires a number describing the level of the business process in the
hierarchy. For an example, see the numbered hierarchy in the section Methodology: Understanding
Business Process Models.

• You may assign the business process to a functional domain.

To capture domains, you must have access to the Business Capability Management ca-
pability which is part of the Portfolio Management Basic sales package.

• You should provide a description of the business process so that other users understand its
purpose.

• As the creator of the business process, you are automatically defined as the authorized user per
default. The authorized user of the business process can be changed in the Authorized Access
tab. You can also define any user groups that should have Read/Write access permissions to the
business process in the Authorized Access tab.

• Once business processes have been created you can specify the following:

• Specify the applications that provide business support to the business process in the Business
Support Page View.

• Specify the business services that are requested by the business process to fulfill a business
function in theBusiness Service Requests Page View.

To capture business service requests, you must have access to the Business Capa-
bility Management capability which is part of the Portfolio Management Basic sales
package.

 Chapter 5: Business Process Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 52

Specifying Business Process Model Variants

Be specifying variants of business processes provide further analyses at a level more meaningful to spe-
cific organizations and stakeholders. For example, the business process Asset Class Trading can have busi-
ness process variants defined for the specific business process execution flows for the sectors Product
Management, FD Trading, and WP Investments. The business process landscape can be modeled each busi-
ness process variant. The business process can be modeled in Alfabet diagrams or users can transverse
from Alfabet to a specific EPC/BPMN diagram in ARIS or choose a diagram in ARIS and link to the business
process variant in Alfabet to study the underlying IT. To access ARIS diagrams from Alfabet, your enterprise
must have a licence for ARIS - Alfabet Interoperability Interface.

Business process variants can be created for a business process in the Business Process Variants Page
View. A name, short name, and description as well as business services can be defined for each business
process variant. It is recommended that the business process variants are defined for the leaf-level busi-
ness processes in the business process hierarchy.

In order for a user responsible for a business process to be able to articulate if improvement is
needed for the business process, business process gaps can be captured for the business ser-
vice requests associated with a business process. Such gaps can be effectively introduced into
the IT planning and portfolio management process by deriving one or more demands from the
gap. To capture business process gaps, you must have access to the Demand Management ca-
pability which is part of the IT Planning Advanced sales package.

 Chapter 6: Organization Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 53

Chapter 6: Organization Definition

The organization hierarchy represents a business-driven govenernance structure that helps the enterprise
to document responsibilities and ownership, report on budgets, and analyze, manage, and plan the IT port-
folio.

An organization describes an administrative or functional unit in the enterprise. Organizations form a self-
referential hierarchy. An organization may have an unlimited number of subordinate organizations but only
one ascendant organization. An organization may have primary responsibility for an object in the same way
that an authorized user has or it may by defined as having an important role in relation to an object. Organi-
zations are supported in their business activities through the business support and business services pro-
vided by applications.

Object class stereotypes may be configured for the class Organization.

Please note that a context-sensitive Help is available for each view available in the Organization
Definition capability. You should refer to the Help if you require an explanation about the func-
tionalities and information available in a specific view.

The following information is available:

• Understanding Governance and Responsibility for Organizations

• Capturing Organizations

Understanding Governance and Responsibility for Organizations

A number of governance concepts are implemented for organizations:

• Authorized User: Each organization has an authorized user. An authorized user has primary
responsibility for the organization and thus has Read/Write access permissions to it. Users may
also be assigned to authorized user groups. All users assigned to an authorized user group that has
been defined for an organization will have Read/Write access permissions to the organization.

• Object Class Stereotypes: Object class stereotypes may be configured by your solution designer
for the object class Organization. If organization stereotypes are configured for your enterprise,
each organization stereotype may capture a specified set of attributes, reference data, and class
configurations, and implement a different governance approach.

• Mandates: Organizations may be managed in a federated architecture. Mandates are typically
configured if object class stereotypes have been configured. By means of a federated
architecture, it is possible to specify the visibility of individual organizations in the Alfabet
interface for specific users.

• Organization Groups: Organizations may be structured in one or more organization groups. Each
organization group has an authorized user. The authorized users of a organization group will have
access permissions to all organizations in the component group. A organization may be assigned
to multiple organization groups.

To capture organization groups, you must have access to the Project and Release De-
sign capability which is part of the IT Planning Complete sales package.

 Chapter 6: Organization Definition

Alfabet 10.15 ©2023 Software AG. All rights reserved. Reference Manual 54

Please note that an organization can be configured to have a role for an object. Roles define the functional
relationship or responsibility that a user or organization has to an object. Roles describe responsibilities but
they do not authorize access permissions to the objects in Alfabet.

Objects in Alfabet are managed by various access permission concepts. For an overview of the
access permission and governance concepts in Alfabet, see the section Understanding Access
Permissions in Alfabet in the reference manual Getting Started with Alfabet.

Capturing Organizations

An organization may have as many levels of subordinateorganizations as needed, although three levels
should be sufficient in the organization hierarchy to provide sufficient information for data analysis and.
Each branch of the organization hierarchy should be defined down to the same level of depth to allow for
comparisons and analyses of the organizations. You can create an organization at the root level of the Or-
ganizations explorer. These are root organizations for which you can create an unlimited number of subor-
dinate organizations. Any organization, whether a root or descendant organization, may contain an unlim-
ited number of sub-organizations.

An organization at the top level of the organization hierarchy is created in the Organizations Explorer. Each
subordinate organization is created in the Subordinate Organizations Page View of its parent organization.

• You must define a unique name and a short name to display on the organization in diagrams and
matrices.

• You may provide the name of a contact person for the organization.

• You should provide a description of the organization so that other users understand its purpose.

• As the creator of the organization, you are automatically defined as the authorized user per
default. The authorized user of the organization can be changed in the Authorized Access tab.
You can also define any user groups that should have Read/Write access permissions to the
organization in the Authorized Access tab.

Once the organizations are defined, you can:

• Specify which ICT objects are owned by the organization in the ICT Objects Page View.

• Specify the business processes executed by the organization in the Business Processes Page
View.

Alfabet also allows virtual organizations to be captured. A virtual organization is either a tempo-
rary or permanent organization such as a decision board, steering committee, or other bodies
that exists outside the formal organizational structure of an enterprise. To capture virtual organ-
izations, you must have access to the Operational Model Planning capability which is part of the
IT Planning Complete sales package.

	Chapter 1: Introduction to Enterprise Architecture Management
	Chapter 2: Application Architecture Definition
	Methodology: Understanding the Application Architecture
	Understanding Governance and Responsibility for Applications
	Capturing the Applications in Your Enterprise
	Defining Application Lifecycles
	Versioning Applications
	Specifying Local Components for Applications
	Capturing Operational Business Supports
	Capturing ICT Objects to Understand IT Costs
	Capturing Relevant Peripherals

	Chapter 3: Information Architecture Definition
	Methodology: Understanding the Information Architecture
	Prerequisite: Specifying the Connection Information for Information Flows
	Defining Information Flows Between Applications, Local Components, and Peripherals
	Defining the Business Data That Is Exchanged
	Defining Local Components as Interfaces
	Defining an Interface System

	Chapter 4: Technology Architecture Definition
	Methodology: Understanding the Technical Architecture
	Components in the Technical Architecture
	Standard Platforms in the Technical Architecture
	Deployments in the Technical Architecture

	Understanding Governance and Responsibility for Components
	Documenting and Defining the Components in Your Enterprise
	Defining the Component's Lifecycle
	Versioning the Component
	Defining the Technical Services Delivered by the Component
	Defining Platform Templates and Standard Platforms
	Defining the Platform Architecture for an Application or Component
	Defining the Operational Deployment of an Application, Component, or Standard Platform
	Defining and Managing Technical Networks and Deployments

	Chapter 5: Business Process Definition
	Methodology: Understanding Business Process Models
	Understanding Governance and Responsibility for Business Process Models
	Defining the Business Process Models in Your Enterprise
	Documenting and Defining the Business Processes
	Specifying Business Process Model Variants

	Chapter 6: Organization Definition
	Understanding Governance and Responsibility for Organizations
	Capturing Organizations

