

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 1

Alfabet Reference Manual

Alfabet Interface for
RESTful Web Services

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 2

Documentation Version Alfabet 10.13.0

Copyright © 2013 – 2022 Software AG, Darmstadt, Germany and/or Software AG USA Inc., Reston, VA, USA,
and/or its subsidiaries and or/its affiliates and/or their licensors.

Use, reproduction, transfer, publication or disclosure is prohibited except as specifically provided for in your
License Agreement with Software AG.

The name Software AG and all Software AG product names are either trademarks or registered trademarks
of Software AG and/or Software AG USA Inc. and/or its subsidiaries and/or its affiliates and/or their licen-
sors. Other company and product names mentioned herein may be trademarks of their respective owners.

This software may include portions of third-party products. For third-party copyright notices, license
terms, additional rights or restrictions, please refer to "License Texts, Copyright Notices and Disclaimers of
Third Party Products". For certain specific third-party license restrictions, please refer to section E of the
Legal Notices available under "License Terms and Conditions for Use of Software AG Products / Copyright
and Trademark Notices of Software AG Products". These documents are part of the product documenta-
tion, located at http://softwareag.com/licenses and/or in the root installation directory of the licensed
product(s).

Software AG products provide functionality with respect to processing of personal data according to the
EU General Data Protection Regulation (GDPR). Where applicable, appropriate steps are documented in the
respective administration documentation.

http://softwareag.com/licenses

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 3

CONVENTIONS USED IN THE DOCUMENTATION

Convention Meaning

Bold Used for all elements displayed in the Alfabet interface including, for example, menu
items, tabs, buttons, dialog boxes, page view names, and commands.

Example: Click Finish when setup is completed.

Italics Used for emphasis, titles of chapters and manuals.

this

Example: see the Administration reference manual.

Initial Capitals Used for attribute or property values.

Example: The object state Active describes...

All Capitals Keyboard keys

Example: CTRL+SHIFT

File >
Open

Used for menu actions that are to be performed by the user.

Example: To exit an application, select File > Exit

< > Variable user input

Example: Create a new user and enter <User Name>. (Replace < > with variable data.)

This is a note providing additional information.

This is a note providing procedural information.

This is a note providing an example.

This is a note providing warning information.

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 4

TABLE OF CONTENTS

Chapter 1: Introduction 6

Chapter 2: Required Licenses 8

Chapter 3: Activating the Alfabet RESTful API on Server Side 9
Enable the Alfabet RESTful API in the web.config Files of the Alfabet Web Application 9
Configure the Web Server Hosting the Alfabet Web Application to Enable the Alfabet RESTful API 11

Disable the WebDAV module of the Internet Information Services 11
Setting the Required Authorization for the api folder 12

Configuring the Server Alias of the Alfabet Web Application to Enable REST API calls 13

Chapter 4: Authorization 16
Required Configuration on Server Side 16

Generating a REST API Password for a User 17
Enabling Reports, ADIF Schemes, and Workflow Templates to be Executed via RESTful Service
Calls 20
Enabling Access to Folders in the Internal Document Selector 20
Configuring Per Object Class Permissions for Reading From or Writing Into the Alfabet database 21
Controlling Access Via Mandates 24
Controlling Access Per Object via Access Permission Concepts 25

Required Implementation on Client Side 26
Overview of Access Permissions Required for Each Endpoint 27

Chapter 5: Configuring Handling of Date, Time and Number Formats For API Calls 32
Configuring a New API Culture 32
Using an API Culture in a Service Call 33

Chapter 6: Service Calls and Return Values 35
Exporting Information about the Complete Alfabet Class Model Including Enumerations and
Culture Settings 38
Exporting Information about All or Multiple Classes of the Alfabet Class Model 43
Exporting Information about All or Multiple Enumerations in the Alfabet Class Model 46
Exporting Information About Object Data Stored in the Alfabet database 48

Exporting Data About Objects with Defined REFSTR Values 49
Exporting Data About Objects Of a Defined Object Class Matching A Filter Definition 54
Exporting Information About Objects Found By A Configured Report 59

Deleting Objects from the Alfabet database 74
Creating and Updating Object Data in the Alfabet database 76

Creating a new Object in the Alfabet database 79
Changing the Properties of an existing Object in the Alfabet database 82
Creating or Updating a Relation Between Objects in the Alfabet database 85

Archiving Objects from the Alfabet database 86
Regenerating the Password of an Alfabet User 89
Anonymizing User Data For Selected Users 91
Starting a Workflow via RESTful Service Call 93
Starting an ADIF Import via RESTful Service Call 94

Triggering ADIF Import from an External Database or a Document in the Alfabet Database 95
Triggering ADIF Import from a File Stream in the Service Call 98

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 5

Checking ADIF Execution Result Status 100
Downloading the Log File for ADIF Execution 102

Starting an ADIF Export via RESTful Service Call 102
Triggering Asynchronous Execution of ADIF Export 103
Checking ADIF Execution Result Status 107
Downloading the Log File for ADIF Execution 109

Exporting Information about the Content of the Internal Document Selector 110
Downloading Documents from the Internal Document Selector 112
Uploading Documents to the Internal Document Selector 113
Checking Whether the Alfabet components are Running 115
Updating the Meta-Model 116

Chapter 7: Accessing the Alfabet User Interface From the External Application 118

Chapter 8: Testing the Alfabet RESTful API 119
Testing the Alfabet RESTful API 119

Configurations Required to Use a Swagger Editor for Testing 119

Chapter 9: Checking Success of Service Calls to the Alfabet RESTful Api 121

 Chapter 1: Introduction

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 6

Chapter 1: Introduction

A RESTful API is available for the Alfabet application that provides easy access to the content in the Alfabet
database. The API is designed as a web service architecture based on the Representational State Transfer
(REST) software architecture type. Session cookies are not used.

The API can be used for the following:

• to get information about the structure of the object class model,

• to get information about objects stored in the Alfabet database,

• to create, update and delete objects and relationships in the Alfabet database,

• to archive objects in the Alfabet database,

• to trigger execution of ADIF jobs based on an ADIF scheme stored in the Alfabet database,

• to trigger start of a workflow via the Alfabet Web Application based on a workflow template stored in
the Alfabet database,

• to regenerate user passwords,

• to anonymize user data for selected users,

• to download documents from the Internal Document Selector, upload documents to the Internal
Document Selector and generate a list of documents in the Internal Document Selector,

• to update the meta-model configuration of the Alfabet database with the configuration stored in an
AMM file,

• to check the availability of the Alfabet components.

This document describes the available data endpoints including the required calls and return values. On ba-
sis of the given information, customers can build interfaces that access the Alfabet database via HTTP re-
quest to the Alfabet RESTful API of a running Alfabet Web Application. The responses are sent in JSON for-
mat.

 Chapter 1: Introduction

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 7

 Chapter 2: Required Licenses

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 8

Chapter 2: Required Licenses

A license for the Alfabet Data Integration Framework (ADIF) must be active to use the Alfabet RESTful API.

In Alfabet 9.10, the Alfabet API for RESTful Web services has been extensively revised to enhance
security. In Alfabet 10.11, both the previous version 1 of the Alfabet RESTful API as well as the
new version 2 are supported, but this reference manual addresses only the newer version 2 of
the Alfabet RESTful API. Please note that only the newer version 2 will be supported as of Octo-
ber 2017. Alfabet releases prior to 9.10 will not provide the functionality described in this refer-
ence manual.

The following GET request can be sent to the RESTful API of the Alfabet Web Application in order
to check whether the Alfabet Web Application that is being connected to via RESTful services
provides an interface based on version 1 or 2:

http://<URL of the Alfabet Web application>/api/Versions

The return value lists the available versions of the API on the server-side. This call enables the
solution developer using the REST API for Alfabet to determine the functionalities that a specific
Alfabet Server is to support. Please note that a version of the API must be enabled in the server
alias of the Alfabet Web Application to be listed in the return value.

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 9

Chapter 3: Activating the Alfabet RESTful API on Server Side

Service calls to the Alfabet RESTful API of the Alfabet Web Application are only processed by the Alfabet
Web Application if an active license for the Alfabet Data Integration Framework (ADIF) is available and the
following configurations are done on server side:

• Enable the Alfabet RESTful API in the web.config Files of the Alfabet Web Application

• Configure the Web Server Hosting the Alfabet Web Application to Enable the Alfabet RESTful API

• Disable the WebDAV module of the Internet Information Services

• Setting the Required Authorization for the api folder

• Configuring the Server Alias of the Alfabet Web Application to Enable REST API calls

Enable the Alfabet RESTful API in the web.config Files of the
Alfabet Web Application

The web.config configuration file is located in the Alfabet Web Application directory of the installation di-
rectory for the Alfabet components. The web.config file can be modified using a standard text editor.

The required settings for the Alfabet RESTful API must be added to the handlers element of the web.con-
fig file of the Alfabet Web Application. The handlers element must have the following child elements apart
from child elements that are already included for other processes:

<remove name="ExtensionlessUrlHandler-Integrated-4.0" />

<add name="AlfaRest1" type="AlfabetWeb5.api.v1.AlfaRestService, AlfabetWeb5"
verb="*" path="api/v1" />

<add name="ExtensionlessUrlHandler-Integrated-4.0" path="*."
verb="GET,HEAD,POST,DEBUG,PUT,DELETE"
type="System.Web.Handlers.TransferRequestHandler" resourceType="Unspecified"
requireAccess="Script" preCondition="integratedMode,runtimeVersionv4.0"
responseBufferLimit="0" />

In addition, the following code must be available in the web.config file to include the correct version of the
required third party component Newtonsoft.Json:

<configuration>

...

<runtime>

<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>

<assemblyIdentity name="Newtonsoft.Json"
publicKeyToken="30ad4fe6b2a6aeed" culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-12.0.0.0"
newVersion="12.0.0.0" />

</dependentAssembly>

<dependentAssembly>

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 10

<assemblyIdentity name="System.Net.Http.Formatting"
publicKeyToken="31bf3856ad364e35" culture="neutral" />

<bindingRedirect oldVersion="0.0.0.0-5.2.7.0"
newVersion="5.2.7.0" />

</dependentAssembly>

</assemblyBinding>

...

</runtime>

</configuration>

This section might be subject to changes during upgrades from one Alfabet version to the other,
because of changes to the version of the embedded component. It is recommended to use the
example web.config file delivered with the release and adapt it to the current environment to
make sure that the above mentioned code and all other required settings are correctly set in the
web.config file as required for the specific release.

If SAML or other single sign on authentication mechanisms are used for Alfabet, this settings
might interfere with the settings required for the authentication method. Please contact Soft-
ware AG Support if problems occur with the REST API settings in the web.config file.

Optionally, security of data transmission can be enhanced by specification of the JSON Web Token (JWT)
for sending JSON objects via the Alfabet RESTful service API. By default, the JWT is hard-coded and there-
fore the same for all Alfabet installations. To change the JWT for an installation, an individual JWT with a
minimum length of 128 bits must be base64 encrypted and the encrypted version must be entered into the
in the alfabet.config file of the Alfabet Web Application:

1) Open the Alfabet Administrator.

2) Click the Alfabet Aliases node in the explorer. A workspace with a toolbar opens.

3) In the toolbar, click Tools > Configure alfabet.config. An editor opens.

4) Click the Browse button on the right of the Web Folder field and select the main directory of
the Alfabet Web Application from the directory browser. The alfabet.config file in the
subdirectory config of the selected directory opens in the editor.

5) Add the following code as child element of the alfaSection XML element:

<add key="ApiJwtBase64Key" value="{Base 64 Encrypted key}"/>

6) Click Save. The change is saved and the editor is closed.

If your RESTful client will send a high number of service calls per second to the Alfabet RESTful service API,
it might be required to increase the maximum allowed number of requests per second. By default pro-
cessing of incoming RESTful service calls is limited to 300 per second. The limit can be changed in the
alfabet.config file of the Alfabet Web Application:

1) Open the Alfabet Administrator.

2) Click the Alfabet Aliases node in the explorer. A workspace with a toolbar opens.

3) In the toolbar, click Tools > Configure alfabet.config. An editor opens.

4) Click the Browse button on the right of the Web Folder field and select the main directory of
the Alfabet Web Application from the directory browser. The alfabet.config file in the
subdirectory config of the selected directory opens in the editor.

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 11

5) Find the add XML element with the key XML attribute set to max_api_requests_per_second
and change the value XML attribute to the required number of requests per second. The default is
300:

<add key="max_api_requests_per_second" value="300"/>

6) Click Save. The change is saved and the editor is closed.

Please note that request limits configured for the web server outside of the Alfabet Web Applica-
tion for the maximum size of a request, the maximum URL length and the maximum length of a
query string will apply to all calls to the Alfabet RESTful services.

Configure the Web Server Hosting the Alfabet Web Application to
Enable the Alfabet RESTful API

The following settings are required for the Web Server hosting the Alfabet Web Application to enable the
Alfabet RESTful API:

• The WebDAV module of the Internet Information Services® hosting the Alfabet Web Application is
not installed.

• The Alfabet RESTful API of the Alfabet Web Application does not support Windows sign On. Windows
sign on must be disabled and Anonymous Access must be enabled for the api sub-folder of the
Alfabet Web Application on the Web server.

If the Alfabet Web Application is configured to authenticate users via portal authentication, the
RESTful API cannot be implemented at all for that Alfabet Web Application.

To use the Alfabet RESTful API in combination with portal authentication, a second Alfabet Web
Application accessing the same Alfabet database must be implemented. This additional Alfabet
Web Application must run with a different server alias configured to use standard authentication
via user name and password for user access to the Alfabet database. The Alfabet RESTful API is
provided by this additional Alfabet Web Application. All configuration steps and URL specification
described in this manual refer to that additional Alfabet Web Application.

Disable the WebDAV module of the Internet Information Services

The WebDAV module can be deactivated in the Server Roles:

1) On the Web Server host, click the Start icon that appears when you move the mouse to the

lower left corner and click on the Server Manager icon to open the Server Manager.

2) In the menu on the upper right of the Server Manager, select Manage > Add Roles and Features.

3) In the Add Roles and Features Wizard, select the installation type and the Web server host in the
first three pages of the wizard and proceed to the Server Roles page, using the Next button of the
wizard.

4) In the Server Roles page, expand Web Server (IIS).

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 12

5) Make sure that the WebDAV Publishing option is not checked:

Setting the Required Authorization for the api folder

Independent from the authentication selected for the Alfabet Web Application, the authentication of the
api sub-folder of the Alfabet Web Application must be set to Anonymous Authentication:

1) On the Web Server host, click the Start icon that appears when you move the mouse to the

lower left corner and click on the Server Manager icon to open the Server Manager.

2) In the menu on the upper right of the Server Manager, select Tools > Internet Information
Services (IIS) Manager.

3) In the explorer, expand the node of the Alfabet Web Application and click on the api folder node.

4) In the section IIS in the middle pane, double-click Authentication. The status of the available
authentication modes is displayed.

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 13

5) Set the Anonymous Authentication option to Enabled and the Windows Authentication option
to Disabled. Changing of the settings is performed by selecting the option in the list and clicking
Disable or Enable respectively in the Action pane on the right.

Configuring the Server Alias of the Alfabet Web Application to Ena-
ble REST API calls

The Alfabet API for RESTful Web services must be enabled in the server alias of the Alfabet Web Application.
Configuration is performed in the configuration tool Alfabet Administrator:

For information about how to access and use the Alfabet Administrator, see the section Working
with the Alfabet Administrator in the reference manual System Administration.

1) In the explorer of the Alfabet Administrator, click the Alfabet Aliases node.

2) In the table, click the server alias that you want to configure.

3) In the toolbar, click the Edit button. An editor opens.

4) Go to the Server Settings > REST API tab.

5) Set the checkmark for the Enable REST API v2 option.

There is a second option Enable REST API v1. This option enables the use of the depre-
cated version of the ARIS - Alfabet Interoperability Interface and is only included for
backward compatibility reasons.

6) Select the checkmark of any RESTful service endpoint that shall be activated on the Alfabet Web
Application in the API Access Options field:

• Has Meta-Model Access: Enables access to the metamodel, classes and enums endpoints
to read information about the structure of the Alfabet class model including enumerations
and culture settings.

• Has GetObjectsByRefs Access: Enables access to the objects endpoint to read
information about data stored for objects in the Alfabet database that are found via
specification of the object's REFSTR in the REST API request. The Has GetObjectsByRefs
Access option is also required for access to the archiveobject endpoint to export
information about the object in an archive ZIP file containing relevant views as HTML files.

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 14

• Has GetObjectsByReport Access: Enables access to the objects endpoint to read
information about data stored for objects in the Alfabet database that are found via a
configured report.

• Has GetObjectsByFilter Access: enables access to the objects end point to read
information about data stored for objects in the Alfabet database that are found via
specification of the object class and filter conditions in the call.

• Has CreateObjects Access: Enables access to the update end point to create new object in
the Alfabet database.

• Has UpdateObjects Access: Enables access to the update endpoint to update data for
existing objects in the Alfabet database.

In addition, this access option is required for access to the regeneratepassword endpoint. Please note
that the Has PasswordAPI Access access option must also be selected to enable the regeneratepass-
word endpoint.

• Has DeleteObjects Access: Enables access to the delete endpoint to delete existing
objects in the Alfabet database. The Has GetObjectsByRefs Access permission is also
required for access to the archiveobject endpoint to export information about the object in
an archive ZIP file containing relevant views as HTML files if the option for deleting the object
after export of the archive is selected.

• Has AnonymizeUser Access: Enables access to the anonymizeuser endpoint to anonymize
users that are found via specification of the user's REFSTR in the REST API request in the
Alfabet database.

• Has PasswordAPI Access: Enables access to the regeneratepassword endpoint. Please
note that the Has UpdateObjects Access option must also be selected to use the
regeneratepassword endpoint.

• Has ADIFAPIInvocationAccess: Enables access to the adifimport and adifexport
endpoints to trigger execution of ADIF jobs based on an ADIF scheme in the Alfabet database.
Please note that this access option is also required for asynchronous execution of the ADIF
scheme via the ADIF Jobs Administration functionality and for execution of ADIF schemes
via the Job Schedule functionality.

• Has WorkflowAPIInvocation Access: Enables access to the workflow endpoint to trigger
start of a workflow based on a workflow template in the Alfabet database.

• Has MonitoringAPI Access: Enables access to the monitor endpoint to check whether the
Alfabet components are available.

• Has IDoc Upload Access: Enables access to the idocupload endpoint for upload of
documents into the internal document selector in the Alfabet database.

• Has IDoc Download Access: Enables access to the idocdownload endpoint for download of
documents from the internal document selector in the Alfabet database.

• Has IDoc File List Access: Enables access to the idocfilelist endpoint for export of
information about the content of the internal document selector in the Alfabet database.

• Has Batch Utilities API Access: Enables access the RESTful service functionality required to
execute batch processes via the Job Schedule functionality and to asynchronously export or
import data capture templates.

 Chapter 3: Activating the Alfabet RESTful API on Server Side

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 15

• Has Update Meta-Model Access: Enables access to the updateMM endpoint to update the
meta-model of the target database with the meta-model configuration stored in an AMM file.

• Has View Snapshot Access: Enables access to the endpoint that is used by the Microsoft
Teams® integration feature to include snapshots of Alfabet views into Microsoft Teams
channel. This option should be enabled if the Microsoft Teams integration is implemented.

7) Click OK to save your changes.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 16

Chapter 4: Authorization

Authorization for the Alfabet Data Integration Framework is done per user, per class and per object:

• Access to the Alfabet RESTful API must be explicitly granted to a named Alfabet user in the user
configuration in the Alfabet database. The permissions can be restricted to a subset of the available
endpoints.

Prior to calls for data request, an authorization call must be performed. In the authorization call the user
name and token is submitted to the Alfabet RESTful API of the Alfabet Web Application, and a unique au-
thorization key for data request calls is sent back. This unique authorization key can be used for a configu-
rable time period for data request calls following the authorization call. After the key expires, a new authori-
zation call must be performed.

• Configuration objects like ADIF schemes, workflow templates, and configured reports are only
executable via REST API calls if the attribute settings of the configuration object includes permission
for execution via REST API.

• Data about an object class can only be read, created or changed via the Alfabet RESTful API if the
class settings for the object class are configured to grant the permissions. An object class can have
multiple class settings. Class settings are assigned to view schemes. A view scheme is then assigned
to a user profile. One or multiple user profiles can be assigned to a named user.

In parallel to login to the Alfabet user interface, REST API calls are also performed for a specific user with a
specific user profile. The user profile is either defined in the REST API request or a default is selected from
the user profiles assigned to the user. Whether the user is allowed to read, create or edit data for an object
class, depends on the class settings relevant for the user profile.

• If the mandate capability is implemented in your company, the user can only read data about an
object if the mandate settings for the user and the object permit access to the object. If the user has
multiple mandates assigned, the mandate valid for the REST API call can be specified in the call. If
the mandate specified in the call is not assigned to the user, an error is thrown.

For an overview of the mandate capability and the configuration of mandates, see Im-
plementing the Mandate Capability for a Federated Architecture in the reference manual
Configuring Alfabet with Alfabet Expand.

• Whether a user can edit data about an object depends on the implemented access permission
concepts in your Alfabet solution, like for example right rules, the membership to authorized user
groups, or the assignment of tasks about an object in the contexts of workflows or assignments.

For a complete overview of the object permission concepts in Alfabet, see the chapter
Configuring Access Permissions for Alfabet in the reference manual Configuring Alfabet
with Alfabet Expand.

Required Configuration on Server Side

Prior to sending service calls to the Alfabet RESTful API, the Alfabet solution must be configured to grant all
required access permissions:

• Generating a REST API Password for a User

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 17

• Enabling Reports, ADIF Schemes, and Workflow Templates to be Executed via RESTful Service Calls

• Enabling Access to Folders in the Internal Document Selector

• Configuring Per Object Class Permissions for Reading From or Writing Into the Alfabet database

• Controlling Access Via Mandates

• Controlling Access Per Object via Access Permission Concepts

Generating a REST API Password for a User

Authorization is done per user and requires that access to the Alfabet RESTful API is explicitly granted to a
named Alfabet user in the user configuration in the Alfabet database. The editor fields required for config-
uring the authorization are only available in the user editor if a valid license for ADIF is available.

User configuration is performed in the User Administration functionality in the user interface that is ac-
cessible via the Admin user profile or the User Management functionality that is available via the con-
nected server alias node in the Alfabet Administrator.

For more information about how to create a named Alfabet user, see the chapter Defining and
Managing Users in the reference manual User and Solution Administration or Managing New and
Existing Users in the reference manual System Administration.

For security reasons and to avoid technical conflicts, take the following into account when granting REST
API access permissions to a named user:

• The user should be exclusively used for calls to the Alfabet RESTful API and should not be used in
parallel to access the Alfabet application via the Alfabet user interface or to access the Alfabet
database via other interfaces provided by Alfabet, like ADIF or the ARIS - Alfabet Interoperability
Interface.

• Multiple users with access to a subset to the endpoints of the Alfabet RESTful API that can either
have read only or read/write access permissions can be defined. If multiple client applications are
configured to send requests to the Alfabet RESTful API, individual users with access permissions
exactly matching the requirements should be used for each client application.

• One of the users that are configured to have access to the Alfabet restful services should be defined
for the execution of self-reflective events. Many Alfabet processes are based on the execution of
RESTful service calls in the background. These processes are authorized using the user specified to
be used for self-reflective events.

After having created a named user, the following settings must be performed to grant access to the Alfabet
RESTful API:

1) In the table of the User Administration functionality, select the user that shall be used to send
request via the Alfabet RESTful API.

2) In the toolbar, click the Edit button. The User editor opens.

3) In the editor, go to the Permissions tab.

4) Select the Has API V2 Access checkbox.

5) Specify details about the access permissions with the following attributes:

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 18

• API Token Duration (minutes): The RESTful service interface on client side must be
implemented to send a request for authorization code prior to sending a data request. The
authorization code received in the response of the authorization request can be used in data
request calls to the Alfabet RESTful API posted within a limited amount of time after receiving
the authorization code. Enter the number of minutes the authorization code should be valid.
By default the authorization code can be used for 20 minutes.

• API Access Options: By default, most of the options are checked in this field to give the user
access to all central functionality provided for the Alfabet RESTful services. Deselect all
options that the user should not have permissions to perform:

• Has Meta Model Access: If selected, the user has access to the metamodel, classes
and enums endpoints to read information about the structure of the Alfabet class
model including enumerations and culture settings.

• Has GetObjectsByRefs Access: If selected, the user has access to the objects
endpoint to read information about data stored for objects in the Alfabet database that
are found via specification of the object's REFSTR in the REST API request. The Has
GetObjectsByRefs Access permission is also required for access to the
archiveobject endpoint to export information about the object in an archive ZIP file
containing relevant views as HTML files.

• Has GetObjectsByReport Access: If selected, the user has access to the objects
endpoint to read information about data stored for objects in the Alfabet database that
are found via a configured report.

• Has GetObjectsByFilter Access: If selected, the user has access to the objects
endpoint to read information about data stored for objects in the Alfabet database that
are found via specification of the object class and filter conditions in the call.

• Has CreateObjects Access: If selected, the user has access to the update endpoint
to create new object in the Alfabet database.

• Has UpdateObjects Access: If selected, the user has access to the update endpoint
to update data for existing objects in the Alfabet database.

In addition, this permission is required for access to the regeneratepassword endpoint. Please note that
the Has PasswordAPI Access permission must also be selected to use the regeneratepassword end-
point.

• Has DeleteObjects Access: If selected, the user has access to the delete endpoint to
delete existing objects in the Alfabet database. The Has DeleteObjects Access
permission is also required for access to the archiveobject endpoint to export
information about the object in an archive ZIP file containing relevant views as HTML
files if the option for deleting the object after export of the archive is selected.

• Has AnonymizeUser Access: If selected, the user has access to the anonymizeuser
endpoint to anonymize users that are found via specification of the user's REFSTR in
the REST API request in the Alfabet database.

• Has PasswordAPI Access: If selected, the user has access to the
regeneratepassword endpoint. Please note that the Has UpdateObjects Access
permission must also be selected to use the regeneratepassword endpoint.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 19

• Has ADIFAPIInvocationAccess: If selected, the user has access to the adifimport
and adifexport endpoints to trigger execution of ADIF jobs based on an ADIF scheme
in the Alfabet database.

• Has WorkflowAPIInvocation Access: If selected, the user has access to the REST
endpoint workflow to trigger start of a workflow based on a workflow template in the
Alfabet database.

• Has MonitoringAPI Access: If selected, the user has access to the monitor end point
to check whether the Alfabet components are available.

• Has IDoc Upload Access: If selected, the user has access to the idocupload endpoint
for upload of documents into the Internal Document Selector in the Alfabet
database.

• Has IDoc Download Access: If selected, the user has access to the idocdownload
endpoint for download of documents from the Internal Document Selector in the
Alfabet database.

• Has IDoc File List Access: If selected, the user has access to the idocfilelist
endpoint for export of information about the content of the internal document selector
in the Alfabet database.

• Has Batch Utilities API Access: If selected, the user has access to the RESTful service
functionality required to execute batch processes via the Job Schedule functionality
and to asynchronously export or import data capture templates.

• Has Update Meta-Model Access: If selected, the user has access to the updateMM
endpoint to update the meta-model of the target database with the meta-model
configuration stored in an AMM file.

• Has View Snapshot Access: Enables access to the endpoint that is used by the
Microsoft Teams® integration feature to include snapshots of Alfabet views into
Microsoft Teams Teams channel. This option should be enabled for the user configured
to execute self-reflective events if the Microsoft Teams integration is implemented.

Access to object data, ADIF schemes, workflows, reports and the Internal Document
Selector require additional permission settings described in the following sections.
An overview of all settings required for individual endpoints is given in the section
Overview of Access Permissions Required for Each Endpoint.

6) Click the Generate API Password button. A code is generated and stored in the Alfabet database.

7) Copy the code and store the information about user name and code for use on client side.

8) If the user shall be used for execution of events of the type SelfReflective, select the user in
the table and select Action > Set as Executes Self-Reflective Events User in the toolbar.

Only one user can be selected for execution of events of the type SelfReflective. If
you assign this functionality to a user while another user has already been selected to
execute self-reflective events, the setting is removed from that user when it is set for
the user you are currently assigning it to.

The generated code must be used for authorization of the client in requests sent to the Alfabet RESTful API
of the Alfabet Web Application in combination with the user name.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 20

The generation of the password can be performed for a user even if the Has API Access check-
box is not checked, but the generated code is only valid for access to the Alfabet RESTful API
when the Has API V2 Access checkbox is set for the user.

Enabling Reports, ADIF Schemes, and Workflow Templates to be Executed via REST-
ful Service Calls

Some endpoints include execution of user configuration objects created by a solution administrator in
Alfabet Expand:

• Configured reports can be executed via a service call to the endpoint objects to export predefined
object data.

• ADIF Schemes can be executed via a service call to the endpoints adifimport or adifexport.

• Workflows can be started for a workflow template via a service call to the endpoint workflow.

The access permissions required for execution via RESTful service calls must be defined in the attributes of
the configured report, ADIF scheme or workflow template in Alfabet Expand:

1) Click the configured report, workflow template or ADIF scheme that you want to execute via
RESTful API in the respective explorer of Alfabet Expand.

2) In the attribute window, set the Applicable for REST API attribute to True.

3) Check whether the following additional configuration requirements are met:

• For workflow templates: Only workflow templates with the Automatic Start attribute set to
True can be executed via RESTful service calls.

• For ADIF schemes: None.

• For configured reports: The configured report must return a tabular dataset.

4) In the toolbar, click the Save button to save your changes.

Enabling Access to Folders in the Internal Document Selector

Folder access permissions specified in the Internal Document Selector are evaluated for REST API calls to
the idocupload, idocdownload and idocfilelist, and to the end points adifimport and adifexport,
if import or export involve files located in the Internal Document Selector.

Folder permissions are set in the Internal Documents functionality on the Alfabet user interface:

1) In the explorer of the Internal Documents functionality, click the parent folder of the folder that
you want to set access permissions for.

2) In the table, click the folder that you want to set access permissions for.

3) In the toolbar, click the Edit button.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 21

4) In the editor, select the checkmarks of the following access permissions in the Default Access
Permissions field:

• For the idocupload and adifexport endpoints: Manage Items

• For the idocdownload and adifimport endpoints: Open Items

• For the idocfilelist endpoint: List Items

5) Click OK to close the editor.

For security reasons, a blacklist and whitelist concept is available in Alfabet to restrict the up-
loading and downloading of files to the Internal Document Selector for specific file extensions.
File extensions can be specified in a blacklist as not permissible for uploading and downloading.
Alternatively, a whitelist can be configured that explicitly and exclusively allows specified file ex-
tensions for upload and download. These settings are also valid for upload and download of files
via the Alfabet RESTful services.

For details and information about the definition of the blacklist and the whitelist, see Configuring
the Permissibility of Files and Web Links in Alfabet in the reference manual Configuring Alfabet
with Alfabet Expand.

Configuring Per Object Class Permissions for Reading From or Writing Into the
Alfabet database

If you would like object data to be read or written via the Alfabet RESTful API, you must define a user profile
that grants the required permissions via the class settings assigned to the user profile's view scheme.

In Alfabet, the user profile a user is logged in with and the view scheme and class settings assigned to this
user profile determine the scope of functionality available to the user.

For detailed information about the configuration of class settings, view schemes and user pro-
files see the chapter Configuring User Profiles for the User Community in the reference manual
Configuring Alfabet with Alfabet Expand.

Please note that the predefined user profile Admin and any user profile that is marked as admin-
istrative user profile provides access to all objects via the Alfabet user interface independent of
access permission concepts and should not be used in the context of the Alfabet RESTful ser-
vices.

Most of the configuration for a user profile and the underlying view scheme and class settings is irrelevant
for the use of the Alfabet RESTful API. The setting required to grant permission to create, edit or delete ob-
jects for an object class is exclusively specified via two attributes in the class setting of the object class. It
is recommended to define class settings for exclusive use via the Alfabet RESTful API and assign them only
to a view scheme and a user profile explicitly defined for use via the Alfabet RESTful API. The user profile
can then be assigned to users authorized to read or alter data via the Alfabet RESTful API only.

Configuration of class settings, view schemes and user profiles is done in Alfabet Expand. The following
configuration is required:

1) Go to the Presentation tab and expand the Class Settings node.

2) In the Class Settings folder, navigate to the object class folder that you want to define class

settings for, right-click the public or private class setting template that you want to copy and

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 22

select the New Class Settings as Copy option to create a new class setting for the selected
object class.

The New Class Settings for Stereotype as Copy option must not be used in this con-
text. The REST API permissions set for object class stereotypes are ignored. Permissions
can only be defined on the level of the object class.

3) A copy of the class settings template is added to the class setting folder. All attributes
specified for the class setting that you copied will also be copied to the new class setting.

4) Click the new class setting template to open the attribute window and enter a technical name for
the class setting in the Name attribute.

It is recommended that the name of the class setting indicates the view scheme that it is
being defined for and the name of the view scheme indicates the user profile it is as-
signed to. In other words, the name of the class setting should thus indicate the user
profile that it is associated with.

A validation mechanism checks for correct syntax when defining a technical name. For a
list of the special characters that are not allowed, see the section Defining Attributes for
Configuration Objects in the chapter Getting Started with Alfabet Expand in the refer-
ence manual Configuring Alfabet with Alfabet Expand.

5) Set one or both of the following attributes to True, depending on the rights that should be granted
for the class:

• Allow Read via Rest API: Set to True to allow reading data of objects of this object class via
the Alfabet RESTful API endpoint objects.

• Allow Write via Rest API: Set to True to allow update data of objects of this object class,
creation of objects and deletion of objects via the delete and update endpoints.

6) In the toolbar, click the Save button to save your changes.

7) Repeat steps 2) - 6) for all object classes that shall be editable via the Alfabet RESTful API.

8) Go to the Presentation tab and expand the View Schemes node.

9) To create the view scheme, do one of the following:

• Right-click the View Schemes folder and select New View Scheme to create a new view
scheme from scratch, or

• Click a view scheme you want to copy and select New View Scheme as Copy to create a new
view scheme based on an existing view scheme.

10) You will see the new view scheme added to the View Schemes folder. In the attribute
window, enter a name in the Name attribute.

A validation mechanism checks for correct syntax when defining a technical name. The
technical name of a configuration object may not begin with an empty space nor include
any of the following special characters: \ / * ? " > < |’:

Furthermore, please note that names may not begin with an empty space nor include
special characters. For a list of the special characters that are not allowed, see the

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 23

section Defining Attributes for Configuration Objects in the chapter Getting Started with
Alfabet Expand.

Furthermore, if the technical name of a configuration object is changed, the name will be
correctly updated in other configuration objects referencing the changed object during
design time. Please note that the name of a changed configuration object will not be up-
dated in guide pages nor if the guide pages reference a configuration object listed in the
Show Usage functionality. If you plan to change the name of a configuration object, the
reference in the guide page should be changed prior to changing the configuration ob-
ject name.

11) You should now systematically determine whether each object class/object class stereotype
requires a custom class setting or whether the standard class setting suffices for your needs. To
open the View Scheme editor for the selected view scheme, double-click the view scheme you are
configuring. The View Scheme editor opens in the center pane.

12) The table labelled Object Class Configuration displays object classes/object class stereotypes on
the first level. Click the + to expand the table below the object class or object class stereotype that
you want to configure. When you expand the object class node, you will see all existing standard
class settings and custom class settings configured by your enterprise for the selected object
class. To specify which class setting should be implemented in the selected view scheme, click in
the Use in View Scheme column, set an X for the class setting to be implemented for the selected
view scheme. Carry out this procedure for all object classes with a class setting configuration for
the Alfabet RESTful API.

13) In the toolbar, click the Save button to save your changes.

14) Go to the Admin tab, right-click the User Profiles node and select New User Profile. A new user

profile is displayed in the explorer.

15) In the attribute window, define the following attributes:

• Name: Enter a caption for the user profile. This is the name of the user profile that users will
see when logging in to Alfabet.

• Type: If the user profile should have editing permissions, select Read/Write. If the user
profile should only have viewing permissions, select ReadOnly.

• View Scheme: Click the Drop-Down button to select the relevant view scheme that
applies to the user profile when accessed by an external application or via a hyperlink in an e-
mail notification.

16) In the toolbar, click the Save button to save your changes.

After having defined the user profile, you must assign the user profile to the user that is already defined to
have access to the Alfabet RESTful API as described in the section Generating a REST API Password for a
User.

User configuration is performed in the User Administration functionality in the user interface that is ac-
cessible via the Admin user profile.

1) In the table of the User Administration functionality, select the user that shall be used to send
requests to alter data via the Alfabet RESTful API.

2) In the toolbar, click the Navigate button. The object profile for the user opens.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 24

3) Click the Assigned User Profiles link in the User's Solution Configuration section. The Assigned
User Profiles page view opens.

4) In the toolbar, click New > Assign User Profiles. The User Profile selector opens.

5) Select the user profile that you have configured for changing data via the Alfabet RESTful API.

6) Click OK to save your selection.

Controlling Access Via Mandates

If your company is using the mandates concept, the mandate settings for users and objects in the Alfabet
database are also taken into account for responses from the Alfabet RESTful API requesting object data or
creating, deleting or updating objects.

For more information about the mandate concept and the required configuration steps see Im-
plementing the Mandate Capability for a Federated Architecture in the reference manual Config-
uring Alfabet with Alfabet Expand.

In the payload of the service call, a mandate can be defined for the call with the field CurrentMandate as
described in the description of service calls in the section Service Calls and Return Values. This setting is
optional, but it is recommended to define the mandate in the call. The system checks whether the mandate
defined in the call is also specified for the user used to send the service call. The user must either have the
mandate assigned or be specified as mandate master. Otherwise the service call will be rejected.

When the mandate concept is implemented, the following rules apply to return of data via calls of the
Alfabet RESTful API:

 No CurrentMandate is defined in the ser-
vice call

A CurrentMandate is defined in the
service call

The user is a man-
date master and
additionally has
one or multiple
mandates as-
signed.

The user will see data about all objects re-
gardless of the mandate assignment of the
objects in the return calls.

The user will see data about all ob-
jects assigned to the mandate de-
fined with CurrentMandate and
about all objects with no mandate
assigned.

The user has a sin-
gle mandate as-
signed and is not
the mandate mas-
ter.

The user will see data about all objects as-
signed to the mandate assigned to him and
about all objects with no mandate as-
signed.

If the mandate specified with Cur-
rentMandate is assigned to the
user, the user will see data about all
objects assigned to that mandate
and about all objects with no man-
date assigned.

If the mandate specified with Cur-
rentMandate is not assigned to the
user, the service call is rejected with
a message that informs about the
fact that the CurrentMandate is
not assigned to the user

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 25

 No CurrentMandate is defined in the ser-
vice call

A CurrentMandate is defined in the
service call

The user has mul-
tiple mandates as-
signed and is not
the mandate mas-
ter.

The user will see data about all objects as-
signed to the default mandate assigned to
him and about all objects with no mandate
assigned. The first mandate in alphabetical
order of the mandates assigned to the user
is the default mandate used.

If the mandate specified with Cur-
rentMandate is assigned to the
user, the user will see data about all
objects assigned to that mandate
and about all objects with no man-
date assigned.

If the mandate specified with Cur-
rentMandate is not assigned to the
user, the service call is rejected with
a message that informs about the
fact that the CurrentMandate is
not assigned to the user

The user has no
mandate assigned
and is not a man-
date master.

The user will see data about all objects that
do not have a mandate assigned.

The service call is rejected with a
message that informs about the fact
that no mandates are assigned to
the user.

If data about an object is requested with a service call to the objects endpoint and the mandate settings
of the object do not match the mandate settings of the user or the mandate specified in the service call, no
data is returned. Instead, two messages about the mandate mismatch are added to the return value:

"RejectedObjects": [

{

"Id": "",

"RefStr": "76-3473-0",

"Message": "Mandate mismatch"

}

],

"AccessDenied": {

"76-3473-0": "Mandate mismatch"

}

If data of an object shall be updated with a service call to the update endpoint or an object shall be deleted
with a service call to the delete endpoint, the return value also includes the AccessDenied field to inform
about the mandate mismatch for individual objects.

Controlling Access Per Object via Access Permission Concepts

When access permissions per object class have been granted to the user executing the service call to the
Alfabet RESTful API as described in the section Configuring Per Object Class Permissions for Reading From
or Writing Into the Alfabet database and the users mandate concepts also permit access as described in the
section Controlling Access Via Mandates, write access to objects might nevertheless be rejected because

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 26

of per object access permissions. The access permission concepts for a user that are implemented in your
Alfabet solution are also evaluated for access to objects via the REST API service calls.

For an overview of available access permission concepts in Alfabet and the required configura-
tions to implement them, see the section Configuring Access Permissions for Alfabet in the ref-
erence manual Configuring Alfabet with Alfabet Expand.

The following must be taken into account:

• User profiles can be configured to grant either ReadWrite or ReadOnly access to Alfabet objects. The
configuration of the user profile used for the Alfabet RESTful API must be configured to grant the
required access permissions.

• The user must have write access permissions to an object based on for example the authorized user
concept or right rules to update or delete object data via a REST API service call.

Usually, a REST API specific user is used to for service calls to the Alfabet RESTful API. This user is not used
for creating and updating objects on the Alfabet user interface. Therefore write access permission based
for example on the assignment as authorized user or availability of open assignments for the object are not
relevant in the context of the Alfabet RESTful API. To grant access to objects for the REST API specific
user, you can for example assign the user to relevant authorized user groups or define a right rule to allow
write access to objects to the specific user logged in with the specific user profile.

Required Implementation on Client Side

The RESTful service interface on client side must be implemented to send a request for authorization code
prior to sending a data request. By default, the authorization code received in the response of the authori-
zation request can be used in data request calls to the Alfabet RESTful API posted within 20 minutes after
receiving the authorization code. The time period can be changed for the user in the User editor.

For more information about changing the validity period for the authorization code, see Required
Configuration on Server Side.

The authorization call must be send to the following URL:

URLOfTheAlfabetWebApplication/api/token

The specification of the URL is case sensitive.

The method for the call is POST.

The Content-Type field of the HTTP header must be defined as:

Content-Type: application/x-www-form-urlencoded

The payload of the request must be defined as:

grant_type=password&username=Alfabet&password=AFPUVOIM462LG3EOMY3A6G4T4WNATJ
I3

The answer is a JSON response with the following structure:

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 27

{

"token_type": "bearer"

access_token":"adf93nfpornpor"

"expires_in": 1200

}

The expires_in field returns the time the token is valid in seconds.

The calls to the Alfabet RESTful API must be send to the following URL amended with the specification of
the service call as described in the following chapters:

URLOfTheAlfabetWebApplication/api/v2

The specification of the URL is case sensitive.

The data in the response of the authorization call must be added as authorization key to the header of all
requests sent to the Alfabet RESTful API in the following format:

Authorization:TypeValue

with

Type = the value in the token_type field

Value = the value in the access_token field

For the answer above, the Authorization would be:

Authorization: bearer adf93nfporesopor

The authorization key expires after approximately 20 minutes if not otherwise configured in the User editor
for the user used for key generation. The client interface should be configured to request a new authoriza-
tion key in regular intervals or prior to each request.

Overview of Access Permissions Required for Each Endpoint

The configuration of access permissions for the Alfabet RESTful services is a complex process to enable
establishing of a maximum of security for each use case. To ease configuration for a specific RESTful ser-
vice targeting the Alfabet RESTful API, the following table lists all available kinds of service calls and the
access permissions that must be configured.

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 28

Functionality Endpoint API Access Options for
the named user having
the option Has API V2
Access enabled

Attribute to
be acti-
vated in the
relevant
class set-
tings of the
object class

Additional permission
concepts that apply

Exporting Infor-
mation about the
Complete Alfabet
Class Model In-
cluding Enumer-
ations and Cul-
ture Settings

metamodel Has Meta Model Access

Exporting Infor-
mation about All
or Multiple Clas-
ses of the
Alfabet Class
Model

classes Has Meta Model Access

Exporting Infor-
mation about All
or Multiple Enu-
merations in the
Alfabet Class
Model

enums Has Meta Model Access

Exporting Data
About Objects
with Defined
REFSTR Values

objects Has GetObjectsByRefs
Access

Allow Read
via Rest API

Mandate settings for
user and object

Exporting Infor-
mation About
Objects Found
By A Configured
Report

objects Has GetObjectsByRe-
port Access

 Mandate settings for
user and object

Access permission of
user and execution
permission for REST
API for configured re-
port

Exporting Data
About Objects Of
a Defined Object
Class Matching A
Filter Definition

objects Has GetObjectsByFilter
Access

Allow Read
via Rest API

Mandate settings for
user and object

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 29

Functionality Endpoint API Access Options for
the named user having
the option Has API V2
Access enabled

Attribute to
be acti-
vated in the
relevant
class set-
tings of the
object class

Additional permission
concepts that apply

Deleting Objects
from the Alfabet
database

delete Has DeleteObjects Ac-
cess

Allow Write
via Rest API

Access permissions of
user for object

Archiving Ob-
jects from the
Alfabet database

archive Has GetObjectsByRefs
Access

(for all calls)

Has DeleteObjects Ac-
cess

(only if objects shall be
deleted after archiving)

Allow Read
via Rest API

(for all calls)

Allow Write
via Rest API

(only if ob-
jects shall
be deleted
after ar-
chiving)

Access permissions of
user for object

Creating a new
Object in the
Alfabet database

update Has CreateObjects Ac-
cess

Allow Write
via Rest API

Access permissions of
user for object

Changing the
Properties of an
existing Object in
the Alfabet data-
base

update Has UpdateObjects Ac-
cess

Allow Write
via Rest API

Access permissions of
user for object

Starting an ADIF
Import via REST-
ful Service Call

adifimport Has ADIFAPIInvocation
Access

 Execution permission
for REST API for ADIF
import scheme

For ADIF import from a
file located in the In-
ternal Document Se-
lector: Open Items ac-
cess permissions on
the IDOC folder and file
extension permission
via the blacklist and
whitelist

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 30

Functionality Endpoint API Access Options for
the named user having
the option Has API V2
Access enabled

Attribute to
be acti-
vated in the
relevant
class set-
tings of the
object class

Additional permission
concepts that apply

Starting an ADIF
Export via REST-
ful Service Call

adifexport Has ADIFAPIInvocation
Access

 Execution permission
for REST API for ADIF
export scheme

For ADIF export to a file
located in the Internal
Document Selector:
Manage Items access
permissions on the
IDOC folder and file ex-
tension permission via
the blacklist and white-
list

Starting a Work-
flow via RESTful
Service Call

workflow Has WorkflowAPIInvoca-
tion Access

 Execution permission
for REST API for work-
flow template

Regenerating the
Password of an
Alfabet User

regenerate-
password

Has PasswordAPI Ac-
cess

Has UpdateObjects Ac-
cess

Allow Read
via Rest API
for the ob-
ject class
Person

Allow Write
via Rest API
for the ob-
ject class
Person

Anonymizing
User Data For
Selected Users

anony-
mizeuser

Has AnonymizeUser Ac-
cess

 Anonymization must be
activated for the object
class person.

Exporting Infor-
mation about the
Content of the
Internal Docu-
ment Selector

idocfilelist Has IDOC File List Ac-
cess

 List Items access per-
missions on the IDOC
folder and file exten-
sion permission via the
blacklist and whitelist

Uploading Docu-
ments to the

idocupload Has IDOC Upload Access Manage Items access
permissions on the
IDOC folder and file

 Chapter 4: Authorization

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 31

Functionality Endpoint API Access Options for
the named user having
the option Has API V2
Access enabled

Attribute to
be acti-
vated in the
relevant
class set-
tings of the
object class

Additional permission
concepts that apply

Internal Docu-
ment Selector

extension permission
via the blacklist and
whitelist

Downloading
Documents from
the Internal Doc-
ument Selector

idocdownload Has IDOC Download Ac-
cess

 Open Items access
permissions on the
IDOC folder and file ex-
tension permission via
the blacklist and white-
list

Checking
Whether the
Alfabet compo-
nents are Run-
ning

monitor Has MonitoringAPI Ac-
cess

Updating the
Meta-Model

updateMM Has Update Meta-Model
Access

 Chapter 5: Configuring Handling of Date, Time and Number Formats For API Calls

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 32

Chapter 5: Configuring Handling of Date, Time and Number For-
mats For API Calls

By default, date and time formats have to be defined and are returned in the standard formats defined by
your language settings.

The Alfabet Web Application can be configured both to return date and time information in other formats
and even to accept other date and time formats in requests. Different sets of date and time format can be
configured for concurrent use by different applications that all send requests to the Alfabet RESTful API
and use a different date/time format.

Please note however, that for requests to the endpoint objects that request results from a con-
figured report with parameters, the parameter settings in the ReportArgs field must be defined
in the standard formats specified above independent from the date/time format specified for the
request.

To define a date and time format for the Alfabet RESTful API, an API Culture must be defined for the
Alfabet solution with the tool Alfabet Expand. The API Culture must then be referenced in the service call
to use the defined date, date time and time formats of that API Culture:

• Configuring a New API Culture

• Using an API Culture in a Service Call

Configuring a New API Culture

Date and Time definition for the Alfabet RESTful API service calls are defined in the Meta-Model explorer of
the tool Alfabet Expand.

For information about how to access and work with Alfabet Expand, see the reference manual
Configuring Alfabet with Alfabet Expand.

Please consider the following syntax for the specification of date and time formats.

• To specify the 24-hour clock system, use "H" or "HH" for hours.

• To specify the 12-hour clock system, use "h" or "hh". This setting requires additional
specification of AM or PM when a time is written.

• Use "M" for month and "m" for minute.

1) In Alfabet Expand, go to the Meta-Model tab.

2) Right click the API Cultures node in the explorer and select Add New API Culture. A new API
Culture element is added to the explorer and the attributes of the new elements are displayed in
the attribute window.

3) In the attribute API Culture Name, change the default name of the API Culture element to a
unique and meaningful name. The name of the API Culture element is used to reference the API
Culture in service calls to the Alfabet RESTful API.

 Chapter 5: Configuring Handling of Date, Time and Number Formats For API Calls

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 33

4) Select one of the following from the dropdown list in the Date Format field to define date and date
time formats:

• Default: The default date pattern yyyy-MM-dd and date time pattern yyyy-MM-dd
HH:mm:ss.fff is used.

• Pattern: A customer defined pattern is used. If you select this option, two new attributes
Date Pattern and Date/Time Pattern are displayed. Write the required date pattern for date
only values into the Date Pattern attribute and the required date time pattern into the
Date/Time Pattern attribute.

• Posix: Dates and date time values are accepted and returned in posix format.

• Windows: The Windows date pattern MM/dd/yyyy and date time pattern MM/dd/yyyy HH:mm
is used.

5) Select one of the following from the dropdown list in the Number Format field to define number
formats:

• Default: The default number format is used. The decimal symbol is a dot, the number of
decimals is not limited and the group symbol is a comma (e.g. 3,125.987).

• Custom: A customer defined pattern is used. If you select this option, three new attributes
Number Grouping Symbol, Number of Decimal Digits and Number Decimal Symbol are
displayed. Define the required number format in the new fields. If a field is undefined, the
default is used for this setting.

6) Select one of the following from the dropdown list in the Time Format field to define time formats:

• Default: The default time pattern HH:mm:ss is used.

• Pattern: A customer defined pattern is used. If you select this option, a new attribute Time
Pattern is displayed. Write the required time pattern into the field.

7) In the toolbar, click the Save button to save your changes.

Using an API Culture in a Service Call

API Cultures defined for the Alfabet solution can be used in service calls to the endpoints objects, delete
and update. To use an API Culture in a service call, a field ApiCulture must be added to the JSON object
in the payload of the call. The field value must specify the name of a defined API Culture.

For example the following request for data about objects of the defined REFSTR values returns
results with dates defined in Posix format:

{

"ApiCulture": "ApiCulture_Posix",

"EmptyValues": true,

"Refs": ["76-3472-0","76-3473-0","76-3474-0"] }

}

This will result in a return value with Posix date formats:

 Chapter 5: Configuring Handling of Date, Time and Number Formats For API Calls

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 34

{

"Objects": [

{

"ClassName": "Application",

"RefStr": "76-3473-0",

"Values": {

"applicationgroups": null,

"baseapplicationid": null,

"color": null,

"creation_date": " 1504696528 ",

"creation_user": "ALFABET", "description": null,

...

}

...

}

]

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 35

Chapter 6: Service Calls and Return Values

Service calls are sending the information about what action to perform in the Alfabet database or what in-
formation to send back to the URL of the Alfabet RESTful API of an Alfabet Web Application. The endpoints
that are available to access and to change data are predefined and require a specific set of parameters to
be sent to the Alfabet RESTful API.

To make a service call, a valid URL consisting of the address of the Alfabet RESTful API and the specifica-
tion of the request endpoint must be sent to the web server via an HTTP client. The header of the request
must contain a valid authorization as described in the chapter above. For some endpoints, the parameters
required for execution of the request must be submitted in JSON format in the payload of the request.

A valid URL has the following structure:

ServerAdress/api/v2/EndpointName/?Parameters

with:

Varia-
ble in
URL

Required Value

Server-
Adress

The web address of the Alfabet Web Application.

The specification of the web address is case sensitive.

api/v2 The specification of the Alfabet RESTful API. The current version is api/v2.

End-
point-
Name

The endpoint to be called. Allowed values are:

• metamodel for calls returning information about all classes and cultures in the Alfabet
meta-model. For more information see Exporting Information about the Complete
Alfabet Class Model Including Enumerations and Culture Settings.

• classes for calls returning information about all or a subset of the classes in the
Alfabet meta-model.

• enums for calls returning information about all or a subset of enumerations defined in
the Alfabet meta-model

• objects for calls returning property values of one or multiple defined object in the
Alfabet database or the result of a query executed via an Alfabet configured report.

• delete for deleting objects and relations from the Alfabet database.

• archiveobject for exporting information about selected objects in the Alfabet
database in a ZIP file containing the most relevant page views for the objects in HTML
format. The endpoint can optionally delete the objects from the Alfabet database after
archiving.

• update for updating data in the Alfabet database and to create new objects and
relations.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 36

Varia-
ble in
URL

Required Value

• regeneratepassword to regenerate the password of selected users in the Alfabet
database.

• anonymizeuser for anonymizing the data of one or multiple selected users in the
Alfabet database.

• workflow to start a workflow based on an existing workflow template in the Alfabet
database.

• adifimport to start an ADIF job based on an ADIF import scheme in the Alfabet
database.

• adifexport to start an ADIF job based on an ADIF export scheme in the Alfabet
database.

• monitor to check whether the Alfabet components that might be involved in the
execution of a RESTful service request are running and can be accessed.

Param-
eters

The specification of parameters only applies to the methods metamodel, classes and enums.

A parameter is defined as:

ParameterName=ParameterValue

If multiple parameters are defined, they are concatenated with an & character:

ParameterName1=ParameterValue1&ParameterName2=ParameterValue2

For the requests of all endpoints except metamodel, classes and enums, the parameters for the request
are defined in the payload of the request in JSON format. Details about the calls are given for each request
in the following chapters.

Each endpoint provides data in JSON format. If the response includes data of the type date, the dates will
by default be strings of the format yyyy-mm-dd. The date format can be changed with a parameter setting
in the payload of the request. If the response includes object class property names, these are returned in
lower case letters.

The endpoints are described in detail in the following sections, including information about the HTTP
method used and the structure of the service call and the return value:

• Exporting Information about the Complete Alfabet Class Model Including Enumerations and Culture
Settings

• Exporting Information about All or Multiple Classes of the Alfabet Class Model

• Exporting Information about All or Multiple Enumerations in the Alfabet Class Model

• Exporting Information About Object Data Stored in the Alfabet database

• Exporting Data About Objects with Defined REFSTR Values

• Exporting Data About Objects Of a Defined Object Class Matching A Filter Definition

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 37

• Exporting Information About Objects Found By A Configured Report

• Configuring a Report that Can be Called in a RESTful Service Request

• Service Call for Direct Execution of a Configured Report

• Service Calls for Execution of Offline Executed Reports

• Return Value for the ReportResultDataSet Asynchronous Report Execution Returning
the Data Defined In the Report

• Return Value for the ReportResultObjects Returning All Properties of the Objects
Found in the Report

• Return Value for the ReportResult Returning the REFSTR of the Objects Found in the
Report

• Deleting Objects from the Alfabet database

• Creating and Updating Object Data in the Alfabet database

• Creating a new Object in the Alfabet database

• Changing the Properties of an existing Object in the Alfabet database

• Creating or Updating a Relation Between Objects in the Alfabet database

• Archiving Objects from the Alfabet database

• Regenerating the Password of an Alfabet User

• Anonymizing User Data For Selected Users

• Starting a Workflow via RESTful Service Call

• Starting an ADIF Import via RESTful Service Call

• Triggering ADIF Import from an External Database or a Document in the Alfabet Database

• Triggering ADIF Import from a File Stream in the Service Call

• Checking ADIF Execution Result Status

• Downloading the Log File for ADIF Execution

• Starting an ADIF Export via RESTful Service Call

• Triggering Asynchronous Execution of ADIF Export

• Checking ADIF Execution Result Status

• Downloading the Log File for ADIF Execution

• Exporting Information about the Content of the Internal Document Selector

• Downloading Documents from the Internal Document Selector

• Uploading Documents to the Internal Document Selector

• Checking Whether the Alfabet components are Running

• Updating the Meta-Model

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 38

Exporting Information about the Complete Alfabet Class Model In-
cluding Enumerations and Culture Settings

The endpoint metamodel returns information about the definition of all Alfabet object classes, the enumer-
ation and the culture settings in the meta-model.

For detailed information about the structure of the Alfabet meta-model and how data is stored in
the Alfabet database tables, see the chapter The Alfabet Meta-Model in the Alfabet Database in
the reference manual Alfabet Data Integration Framework or the reference manual Alfabet Meta-
Model.

Endpoint name: metamodel

HTTP method: GET

Service call:

ServerAdress/api/v2/metamodel/?emptyValues=true

with the following parameters:

Parameter Manda-
tory/Op-
tional

Required Value

emp-
tyValues=true/false

Optional If emptyValues=true is added to the service call, all relevant
attributes of the object classes, enumerations and culture set-
tings are returned even if they are not set. If emp-
tyValues=false is added, only attributes that are set are re-
turned. By default the attribute is set to false.

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Return value:

The return value is a JSON object with four fields:

• alias: The name of the server alias of the Alfabet Web Application answering the request.

• cultures: A JSON list of cultures defined in the Alfabet meta-model.

• classes: A JSON list of classes defined in the Alfabet meta-model.

• enums: A JSON list of enumerations defined in the Alfabet meta-model.

{

"alias": "Alfabet"

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 39

-"cultures": [...]

-"classes": [...]

-"enums": [...]

}

The fields cultures, classes and enums all consist of a JSON list of objects. Each object class, enumera-
tion and culture setting in the Alfabet meta-model is an object in the respective JSON list. The attributes of
the meta-model object are fields of the JSON object with a name corresponding to the name of the attrib-
ute. Attributes specify the technical data about the meta-model object that is used to build the database
tables and to process the object data within the Alfabet solution. The list of attributes is limited to the at-
tributes that may be relevant for external applications. For example the date of the last update or tags de-
fined for the object are not exported.

Subordinate objects, like for example enumeration items for enumerations are listed as a field that contains
the subordinate objects as a JSON list of objects.

The following information is provided:

Object
Type in
the
Alfabet
meta-
model

Information provided in
the response

Example

Culture
Set-
tings

Each culture setting in
the Alfabet meta-model is
a JSON object in the
JSON list of the field cul-
tures.

Each relevant attribute
defined for the culture
setting in the Alfabet
meta-model is defined as
a field in the JSON object.
The field names are simi-
lar to the names of the at-
tributes.

"cultures": [7]

0: {

"BaseCulture": 1031

"DateFormatCulture": 1031

"NumberFormatCulture": 1031

"HelpCulture": 1031

"IsDefault": false

"IsInstanceTranslation": true

"Picture": "Flag_German"

"TimePattern": "HH:mm:ss"

"MeasurementUnit": "Metric"

}

...

Object
Classes

Each object class in the
Alfabet meta-model that
is visible in the Classes
explorer of the Meta-
model tab of the configu-
ration tool Alfabet Expand
is a JSON object in the

"classes": [266]

0: {

"Name": "Domain"

"Id": 359

"Comment": ""

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 40

Object
Type in
the
Alfabet
meta-
model

Information provided in
the response

Example

JSON list of the field
classes.

Information about object
classes includes the fol-
lowing:

• Attributes of the
object class

The relevant attributes
defined for the object
class in the Alfabet meta-
model are each defined as
a field in the JSON object.
The field names are simi-
lar to the names of the at-
tributes.

Please note that object
classes having the attrib-
ute Automatically Man-
aged set to true are ob-
ject classes that shall only
be changed by mecha-
nisms triggered by the
Alfabet software compo-
nents and must not be
changed by any third
party component.

• Object class
properties

For each Alfabet object
class a database table ex-
ists in the Alfabet data-
base. Each object class
property corresponds to a
column in the database
table, that means that the
object class properties
store the information
about individual objects
of the class. All object
class properties that are
visible in the Classes ex-
plorer of the Metamodel
tab of the configuration
tool Alfabet Expand are
included into the field
Properties as a JSON

"Caption": "Domain"

"AutomaticallyManaged": false

"TechName": "DOMAIN"

"Audit": true

"HasMandates": true

"Hint": ""

"IDPrefix": "DOM"

"Stereotypes":[5]

0: {

"Name": "Area"

"Caption": "Area"

"CaptionPlural":"Areas"

"comment": ""

"HasMandates": false

}

...

"Properties": [31]

0: {

"Name": "ID"

"Guid":
"6736AEFBF52C416C94D161FAABAF3D7F"

"TechName": "ID"

"Caption": "ID"

"Comment": ""

"Hint": ""

"Alias": ""

"Type": "String"

"AutomaticallyManaged": false

"DefaultValue": null

"Validator": ""

"EnumInfo": ""

}

...

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 41

Object
Type in
the
Alfabet
meta-
model

Information provided in
the response

Example

list of object, each JSON
object representing a
property and the fields of
the JSON object repre-
senting a subset of the
attributes of the property
that might be relevant for
external processes.

Please note that object
class properties having
the attribute Automati-
cally Managed set to
true are properties that
shall only be changed by
the Alfabet software
components and must
not be changed by any
third party component.

• Object class
stereotypes

If stereotypes are config-
ured for the object class,
the stereotypes are in-
cluded as a JSON list of
objects in the field Ste-
reotypes of the class
object. Each attribute of
the stereotype is ex-
ported as a field in the
JSON object.

• Class Keys

A class key with an attrib-
ute Unique set to True
specifies one or a combi-
nation of object class
properties that must be
unique for that class. If
the data does not fulfill
the requirements speci-
fied in the class key defi-
nition, the object cannot
be created in the data-
base. The Alfabet meta-
model also allows class
keys to be specified that
do not require unique-
ness. In this case, the

"Keys": [3]

0: {

"Name": "Domain_Key1"

"TechName": "C359_K1"

"Content": "BelongsTo"

"Unique": false

"IsCaseIns": false

"Descending": false

"IsActivated": true }

...

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 42

Object
Type in
the
Alfabet
meta-
model

Information provided in
the response

Example

class key attribute
Unique will be set to
False. The purpose of
such a class key is to
speed up the search
functionality by creating
an index for each class
key. In the return value,
each class key is an ob-
ject and listed in an array
of objects in the field
"unique keys" in the ob-
ject class object.

Enu-
mera-
tions

Each enumeration in the
Alfabet meta-model is a
JSON object in the JSON
list of the field enums.

Information about enu-
meration includes the fol-
lowing:

• Attributes of the
enumeration

Each relevant attribute
defined for the enumera-
tion in the Alfabet meta-
model is defined as a field
in the JSON object. The
field names are similar to
the names of the attrib-
utes.

• Enumeration
items and their
attributes

The enumeration items
defined for the enumera-
tion are listed in the field
Items. The field Items
provides a JSON list of
objects. Each enumera-
tion item is an object in
that list and the fields of
the object return the rele-
vant attributes of the
enumeration item. The

"enums": [90]

0: {

"Name": "AlfaDocCategory"

"Guid":
"6E7E549625034B788C5725F2541BD412"

"Comment": ""

"Hint": ""

"HelpFile":
"Enum_AlfaDocCategory.html"

"Items": [7]

0: {

"Value": ""

"Comment": ""

"Hint": ""

}

1: {

"Value": "Manual"

"Comment": ""

"Hint": ""

}

...

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 43

Object
Type in
the
Alfabet
meta-
model

Information provided in
the response

Example

field names are similar to
the names of the attrib-
utes.

Exporting Information about All or Multiple Classes of the Alfabet
Class Model

The endpoint classes returns information about the definition of all or a subset of the Alfabet object clas-
ses in the Alfabet meta-model.

For detailed information about the structure of the Alfabet meta-model and how data is stored in
the Alfabet database tables, see the chapter The Alfabet Meta-Model in the Alfabet Database in
the reference manual Alfabet Data Integration Framework or the reference manual Alfabet Meta-
Model.

Endpoint name: classes

HTTP method: GET

Service call:

ServerAdress/api/v2/classes/?names=Domain,Application&emptyValues=true

with the following parameters:

Parameter Manda-
tory/Op-
tional

Required Value

names= Class-
Name, ClassName

Optional A comma separated list of object classes for that information
shall be returned. The object class must be defined by the
value of the Name attribute of the object class. If the parame-
ter is not added to the call, information about all object clas-
ses in the Alfabet meta-model is returned.

emp-
tyValues=true/false

Optional If emptyValues=true is added to the service call, all relevant
attributes of the object classes are returned even if they are
not set. If emptyValues=false is added, only attributes that
are set are returned. By default the attribute is set to false.

Header Fields:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 44

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Return value:

The return value is a JSON object with two fields:

• alias: The name of the server alias of the Alfabet Web Application answering the request.

• classes: A JSON list of classes defined in the Alfabet meta-model.

{

"alias": "Alfabet"

-"classes": [...]

}

The field classes consists of a JSON list of objects. Each object class in the Alfabet meta-model is an object
in the JSON list. The attributes of the meta-model object class are fields of the respective JSON object. The
name of the field corresponds to the name of the attribute. Attributes specify the technical data about the
meta-model object that is used to build the database tables and to process the object data within the
Alfabet solution. The list of attributes is limited to the attributes that may be relevant for external applica-
tions. For example the date of the last update or tags defined for the object are not exported.

Subordinate objects, like for example stereotypes defined for the class are listed as a field that contains the
subordinate objects as a JSON list of objects.

The following information is provided:

If the parameter names is not speci-
fied in the request, each object class
in the Alfabet meta-model that is
visible in the Classes explorer of the
Metamodel tab of the configuration
tool Alfabet Expand is a JSON object
in the JSON list of the field clas-
ses. The classes are listed in alpha-
betical order.

If the parameter names is specified
in the request, the list of classes
contains only the classes defined in
the names parameter in the order
specified in the names parameter.

Information about object classes in-
cludes the following:

• Attributes of the object
class

"classes": [266]

0: {

"Name": "Domain"

"Id": 359

"Comment": ""

"Caption": "Domain"

"AutomaticallyManaged": false

"TechName": "DOMAIN"

"Audit": true

"HasMandates": true

"Hint": ""

"IDPrefix": "DOM"

"Stereotypes":[5]

0: {

"Name": "Area"

"Caption": "Area"

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 45

The relevant attributes defined for
the object class in the Alfabet meta-
model are each defined as a field in
the JSON object. The field names
are similar to the names of the at-
tributes.

Please note that object classes hav-
ing the attribute Automatically
Managed set to true are object
classes that shall only be changed
by mechanisms triggered by the
Alfabet software components and
must not be changed by any third
party component.

• Object class properties

For each Alfabet object class a data-
base table exists in the Alfabet da-
tabase. Each object class property
corresponds to a column in the da-
tabase table, that means that the
object class properties store the in-
formation about individual objects
of the class. All object class proper-
ties that are visible in the Classes
explorer of the Metamodel tab of
the configuration tool Alfabet Ex-
pand are included into the field
Properties as a JSON list of ob-
ject, each JSON object representing
a property and the fields of the
JSON object representing a subset
of the attributes of the property that
might be relevant for external pro-
cesses.

Please note that object class prop-
erties having the attribute Auto-
matically Managed set to true are
properties that shall only be
changed by the Alfabet software
components and must not be
changed by any third party compo-
nent.

• Object class stereotypes

If stereotypes are configured for the
object class, the stereotypes are in-
cluded as a JSON list of objects in
the field Stereotypes of the class
object. Each attribute of the

"CaptionPlural":"Areas"

"comment": ""

"HasMandates": false

}

...

"Properties": [31]

0: {

"Name": "ID"

"Guid":
"6736AEFBF52C416C94D161FAABAF3D7F"

"TechName": "ID"

"Caption": "ID"

"Comment": ""

"Hint": ""

"Alias": ""

"Type": "String"

"AutomaticallyManaged": false

"DefaultValue": null

"Validator": ""

"EnumInfo": ""

}

...

"Keys": [3]

0: {

"Name": "Domain_Key1"

"TechName": "C359_K1"

"Content": "BelongsTo"

"Unique": false

"IsCaseIns": false

"Descending": false

"IsActivated": true }

...

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 46

stereotype is exported as a field in
the JSON object.

• Class Keys

A class key with an attribute Unique
set to True specifies one or a com-
bination of object class properties
that must be unique for that class. If
the data does not fulfill the require-
ments specified in the class key def-
inition, the object cannot be created
in the database. The Alfabet meta-
model also allows class keys to be
specified that do not require
uniqueness. In this case, the class
key attribute Unique will be set to
False. The purpose of such a class
key is to speed up the search func-
tionality by creating an index for
each class key. In the return value,
each class key is an object and listed
in an array of objects in the field
"unique keys" in the object class
object.

Exporting Information about All or Multiple Enumerations in the
Alfabet Class Model

The endpoint enums returns information about the definition of all or a subset of the enumerations in the
Alfabet meta-model. Enumerations define a predefined set of values that are allowed to be set for an object
class property.

For detailed information about the structure of the Alfabet meta-model and how data is stored in
the Alfabet database tables, see the chapter The Alfabet Meta-Model in the Alfabet Database in
the reference manual Alfabet Data Integration Framework or the reference manual Alfabet Meta-
Model.

Endpoint name: enums

HTTP method: GET

Service call:

ServerAdress/api/v2/enums?names=Enum1,Enum2&emptyValues=true

with the following parameters:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 47

Parameter Manda-
tory/Op-
tional

Required Value

names= EnumName, EnumName Optional A comma separated list of enumeration for that infor-
mation shall be returned. The enumeration must be de-
fined by the value of the Name attribute of the enu-
meration. If the parameter is not added to the call, in-
formation about all enumerations in the Alfabet meta-
model is returned.

emptyValues=true/false Optional If emptyValues=true is added to the service call, all
relevant attributes of the enumeration and enumera-
tion items are returned even if they are not set. If emp-
tyValues=false is added, only attributes that are set
are returned. By default the attribute is set to false.

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Return value:

The return value is a JSON object with two fields:

• alias: The name of the server alias of the Alfabet Web Application answering the request.

• classes: A JSON list of classes defined in the Alfabet meta-model.

{

"alias": "Alfabet"

-"enum": [...]

}

The field classes consists of a JSON list of objects. Each enumeration in the Alfabet meta-model is an ob-
ject in the JSON list. The attributes of the enumeration are fields of the respective JSON object. The name
of the field corresponds to the name of the attribute. Attributes specify the technical data about the meta-
model object that is used to build the database tables and to process the object data within the Alfabet so-
lution. The list of attributes is limited to the attributes that may be relevant for external applications. For
example the date of the last update or tags defined for the object are not exported.

Subordinate objects, like for example enumeration items defined for the enumeration are listed as a field
that contains the subordinate objects as a JSON list of objects.

The following information is provided:

If the parameter names is not specified
in the request, each enumeration in the

"enums": [90]

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 48

Alfabet meta-model that is visible in the
Classes explorer of the Metamodel tab
of the configuration tool Alfabet Expand
is a JSON object in the JSON list of the
field enums. The enumerations are listed
in alphabetical order.

If the parameter names is specified in
the request, the list of enumerations
contains only the enumerations defined
in the names parameter in the order
specified in the names parameter.

Information about object classes in-
cludes the following:

• Attributes of the enumeration

Each relevant attribute defined for the
enumeration in the Alfabet meta-model
is defined as a field in the JSON object.
The field names are similar to the names
of the attributes.

• Enumeration items and their
attributes

The enumeration items defined for the
enumeration are listed in the field Items.
The field Items provides a JSON list of
objects. Each enumeration item is an
object in that list and the fields of the
object return the relevant attributes of
the enumeration item. The field names
are similar to the names of the attrib-
utes.

0: {

"Name": "AlfaDocCategory"

"Guid":
"6E7E549625034B788C5725F2541BD412"

"Comment": ""

"Hint": ""

"HelpFile":
"Enum_AlfaDocCategory.html"

"Items": [7]

0: {

"Value": ""

"Comment": ""

"Hint": ""

}

1: {

"Value": "Manual"

"Comment": ""

"Hint": ""

}

...

}

Exporting Information About Object Data Stored in the Alfabet da-
tabase

The endpoint objects returns the information stored about one or multiple objects in a database table of
the Alfabet database. There are three methods to select the objects for that information is returned by this
endpoint:

• Objects By References

This method requires that the value of the REFSTR property of the object is known. The REFSTR is a unique
identifier for objects in the Alfabet database. It has to be defined in the payload of the request to export all
property values set for the object.

• Objects By Filter

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 49

The method returns all property values set for all objects of a specified object class matching search condi-
tions that are defined in the service call. The search filter in the service call can only search in object class
properties returning a text, that means object class properties of the type Text or String.

• Objects By Report

The payload of the request can point to a configured report of the type NativeSQL or Query in the Alfabet
database. The return value includes all information included in the dataset of the report or a subset thereof.

The following information is available:

• Exporting Data About Objects with Defined REFSTR Values

• Exporting Data About Objects Of a Defined Object Class Matching A Filter Definition

• Exporting Information About Objects Found By A Configured Report

• Configuring a Report that Can be Called in a RESTful Service Request

• Service Call for Direct Execution of a Configured Report

• Service Calls for Execution of Offline Executed Reports

• Service Call for Triggering Offline Execution

• Checking the Status of the Asynchronous Report Execution

• Exporting Results from Asynchronous Report Execution

• Return Value for the ReportResultDataSet Asynchronous Report Execution Returning the
Data Defined In the Report

• Return Value for the ReportResultObjects Returning All Properties of the Objects Found in the
Report

• Return Value for the ReportResult Returning the REFSTR of the Objects Found in the Report

Exporting Data About Objects with Defined REFSTR Values

Endpoint name: objects

HTTP method: POST

Service call:

ServerAdress/api/v2/objects

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 50

The payload is a JSON object with the following structure:

{

"CurrentProfile":"UserProfile1",

"CurrentMandate":"Mandate1",

"ApiCulture": "ApiCulture_Posix",

"Language": 1033,

"DataCulture": "de-DE",

"EmptyValues": true,

"Refs": ["76-2518-0","76-3246-0","405-3-0"]

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Refs":[" RefstrOfOb-
ject "," RefstrOfOb-
ject "]

Mandatory An array containing one or multiple values of the REFSTR
property of objects in the Alfabet database. The response
will include information about the objects with the objects
specified by their REFSTR.

"Emp-
tyValues":true/false

Optional If EmptyValues is set to true, all object class properties of
the object are returned even if they are not set. If Emp-
tyValues is set to false, only object class properties of
the object that are set are returned. By default the attrib-
ute is set to false.

"CurrentPro-
file":" UserProfile-
Name "

Mandatory The name of a user profile assigned to the Alfabet user
sending the call that shall be used to access Alfabet. The
user profile is required to evaluate whether the user that is
sending the service call is allowed to read data about an
object. For details about the access permissions that de-
pend on the user profile, see the section Authorization.

"CurrentMandate":" Man-
dateName "

Optional This field is only relevant if access to objects is controlled
by the mandate concept for federated architectures im-
plemented in Alfabet. The field must specify the name of a
mandate assigned to the Alfabet user sending the call. For
details about the consideration of mandate settings in
REST API service calls, see the section Controlling Access
Via Mandates.

"Language": "Lan-
guageLCID "

Optional This field is only relevant if instance translation is used in
your Alfabet application. The field has to specify the lan-
guage code (LCID) decimal of the culture for that transla-
tions are available for the name and description of the

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 51

Field Manda-
tory/Op-
tional

Required Value

object in the Alfabet database. By default the standard
language of the database is returned.

Please note that no values are returned when an instance
translation is not available for an object class property,
even if a value is provided in the standard language.

To return all values in the original values and add transla-
tions in a second language, the parameter DataCulture
shall be used instead of the parameter Language. Lan-
guage supersedes DataCulture. If both fields are availa-
ble, only Language is used.

"DataCulture":" Lan-
guageCode "

Optional This field is only relevant if instance translation is used in
your Alfabet application. The field has to specify the lan-
guage code of the culture for that translations are availa-
ble for the name and description of the object in the
Alfabet database (for example de-DE for German), or ALL
to return translations for all languages that provide trans-
lation. Translations are added to the return value in addi-
tion to the values in the original language in a separate
field Translations.

The field Language supersedes DataCulture. If both
fields are available, only Language is used and DataC-
ulture is ignored.

"ApiCulture":"APICul-
tureName"

Optional This field specifies an API Culture that was defined in
Alfabet Expand as part of the configuration of the Alfabet
meta-model. The API Culture allows to define data,
date/time and time patterns as well as number formats
that deviate from the Alfabet standard. If this field is
added to the request, dates, times and numbers are writ-
ten into the return value in the formats specified in the API
Culture definition. For more information, see the section
Configuring Handling of Date, Time and Number Formats
For API Calls.

"SortOrder": " Ob-
jectClassPropertyName "

 Define the name of an object class property to sort results
by this property alpha-numerical in ascending order in the
return value.

By default objects are sorted by ascending REFSTR.

If objects do not have a value for the selected object class
property, these objects are sorted by ascending REFSTR
and listed first.

If either Language or DataCulture is set, and data trans-
lation is enabled for the object class property, the values
are sorted by translated value. If no translation is provided

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 52

Field Manda-
tory/Op-
tional

Required Value

for some of the object class property values, these objects
are sorted by ascending REFSTR and listed first.

Return value:

The return value is a JSON object with two fields:

• Count: The number of objects found in the database for that data is returned. The count may differ
from the number of defined REFSTR values in the request: if an object is not found because the
REFSTR defined in the request does not exist in the Alfabet database, the object is not included in
the count and in the returned object data.

• Objects: A JSON list of objects, each object representing a database object for that data is
returned.

{

"Objects": [...]

"Count": 3

}

The field Objects contains one JSON object per database object found for the call. The object contains the
following fields:

• ClassName: The name of the Alfabet object class the object belongs to.

• RefStr: The value of the REFSTR of the object.

• Values: A JSON object that includes all information defined about the object in the database via
object class properties. Each property is a field with a name corresponding to the property name.
The value of the field informs about the value of the property. The return value for a property
depends on the value type of the property:

Property
Type

Return value

String,
Text

The string, text is returned as string (in inverted commas):

"description":"This application manages customer
relations."

StringAr-
ray

All selected options of the string array are returned in one string:

"subcategories": "APP_SecurityAssessment
APP_CloseSubworkflow"

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 53

Property
Type

Return value

Boolean Boolean values are 1 for true, 0 for false or null if the property is not set:

"variant": 1

Real, Inte-
ger

Real and integer values are returned as number:

"xpos": 485.4

Date,
DateTime

Date and date time information is both returned as date strings of the format
yyyy-mm-dd:

"last_update": "2012-02-21"

URL URLs are returned as string (in inverted commas):

"url": "http://company.com/ReportServer"

Reference The REFSTR of the object the reference is targeting is returned:

"ictobject": "26-608-0"

Refer-
enceArray

For reference arrays, the REFSTRs of all objects that the current object references
with this property are listed in an array:

"applicationgroups": [3]

0: "95-38-0"

1: "95-8-0"

2: "95-9-0"

The return value is independent from the setting of the attribute RefSupport of
the property. If the attribute RefSupport of the property is set to false, the REF-
STR value of the reference targets are directly stored in the database table of the
object class in a column for the property. If the attribute RefSupport is set to
true, the references are stored in the RELATIONS table. This difference is not visi-
ble in the return value for the objects endpoint.

If information about the objects referenced by the current object shall be included
into the return value, you can use the method to find objects via a configured re-
port that is also available for the endpoint objects.

• Translations: This field is only available if the field DataCulture is defined in the payload of the
service call. The field contains a JSON list of object with one object per data culture. Each object has
a field DataCulture that returns the language for that translations are returned and one field
Values that is a JSON object with a field for each translated property. The value of the field informs
about the translated value of the property.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 54

• GenericAttributes: If attributes are defined for the object via the object class
GenericAttribute, all generic attributes with the object class property Owner set to the current
object are listed in this field as a JSON list of objects. Each object in the list returns one object of the
class GenericAttribute, with the fields Refstr, Values and Translations that return data
about the generic attribute in the same format as returned for the main object.

Exporting Data About Objects Of a Defined Object Class Matching A Filter Definition

Endpoint name: objects

HTTP method: POST

Service call:

ServerAdress/api/v2/objects

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile":"UserProfile1",

"CurrentMandate":"Mandate1",

"ApiCulture": "ApiCulture_Posix",

"Language": 1033,

"DataCulture": "de-DE",

"EmptyValues": true,

"Class": "Application",

"Limit":"80"

"FilterTextProperties": [

{"Name":"Content*","ShortName":"CMS*"},

{"Name":"Document*"}

]

}

It may have the following fields:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 55

Field Manda-
tory/Op-
tional

Required Value

"Class":"Ob-
jectClassName"

Manda-
tory

The value of the Name attribute of the Alfabet object class for
that object data shall be returned. Only one object class can be
defined for a service call.

"FilterTextProper-
ties":[{"Proper-
tyName":"Filter-
Value","Proper-
tyName":"Filter-
Value"}, {{"Proper-
tyName":"Filter-
Value","Proper-
tyName":"Filter-
Value"}]

Manda-
tory

An array containing the filter definition. The array must contain
at least one JSON object with one field. Each field defines a filter
condition with the syntax:

"ObjectClassPropertyName":"SearchCondition"

Please note the following about the filter definitions:

• The search filter in the service call may only include
object class properties returning a text, that means
object class properties of the type Text or String.

• Asterisks can be used as wildcard in the search strings.

• If the search string is empty, the search returns only
objects for that this object class property is not set.

• Each JSON object in the filter array can have multiple
fields. The fields are evaluated with an AND condition. For
example the filter
{"Name":"Content*","ShortName":"CMS*"} finds
objects with a name starting with Content AND a short
name starting with CMS.

• The filter array can include multiple JSON objects. The
filter definitions in different JSON objects are evaluated
with an OR condition. For example the filter
{"Name":"Content*"},{"ShortName":"CMS*"} finds
objects with a name starting with Content OR a short
name starting with CMS.

"Limit":Number Optional This field defines the maximum number of objects for that the
response of the call shall return data. This value may be set to
limit data return for filter definitions returning a high number of
objects. In combination with the field Offset this field can be
used to fetch the result of a big search in multiple steps.

If Limit is not set, a maximum number of 1000 result data sets
of the configured report are returned.

"Offset":Number Optional This field defines the start position for returning values in the
result data set of the configured report. For example if the
Limit field is set to 20 and the Offset is set to 10, the results
listed in row 11 to 30 in the tabular output of the configured

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 56

Field Manda-
tory/Op-
tional

Required Value

report are returned in the service call. By default, the start posi-
tion is the first row in the data set with the number 0.

"Emp-
tyValues":true/false

Optional If EmptyValues is set to true, all object class properties of the
object are returned even if they are not set. If EmptyValues is
set to false, only object class properties of the object that are
set are returned. By default the attribute is set to false.

"CurrentPro-
file":" UserProfile-
Name "

Manda-
tory

The name of a user profile assigned to the Alfabet user sending
the call that shall be used to access Alfabet. The user profile is
required to evaluate whether the user that is sending the ser-
vice call is allowed to read data about an object. For details
about the access permissions that depend on the user profile,
see the section Authorization.

"CurrentMan-
date":" Man-
dateName "

Optional This field is only relevant if access to objects is controlled by the
mandate concept for federated architectures implemented in
Alfabet. The field must specify the name of a mandate assigned
to the Alfabet user sending the call. For details about the con-
sideration of mandate settings in REST API service calls, see the
section Controlling Access Via Mandates.

"Language": "Lan-
guageLCID "

Optional This field is only relevant if instance translation is used in your
Alfabet application. The field has to specify the language code
(LCID) decimal of the culture for that translations are available
for the name and description of the object in the Alfabet data-
base. By default the standard language of the database is re-
turned.

Please note that no values are returned when an instance trans-
lation is not available for an object class property, even if a value
is provided in the standard language.

To return all values in the original values and add translations in
a second language, the parameter DataCulture shall be used
instead of the parameter Language. Language supersedes
DataCulture. If both fields are available, only Language is
used.

"DataCulture":" Lan-
guageCode "

Optional This field is only relevant if instance translation is used in your
Alfabet application. The field has to specify the language code
of the culture for that translations are available for the name
and description of the object in the Alfabet database (for exam-
ple de-DE for German), or ALL to return translations for all lan-
guages that provide translation. Translations are added to the
return value in addition to the values in the original language in
a separate field Translations.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 57

Field Manda-
tory/Op-
tional

Required Value

The field Language supersedes DataCulture. If both fields are
available, only Language is used and DataCulture is ignored.

"ApiCulture":"API-
CultureName"

Optional This field specifies an API Culture that was defined in Alfabet
Expand as part of the configuration of the Alfabet meta-model.
The API Culture allows to define data, date/time and time pat-
terns as well as number formats that deviate from the Alfabet
standard. If this field is added to the request, dates, times and
numbers are written into the return value in the formats speci-
fied in the API Culture definition. For more information, see the
section Configuring Handling of Date, Time and Number Formats
For API Calls.

"SortOrder": " Ob-
jectClassProper-
tyName "

 Define the name of an object class property to sort results by
this property alpha-numerical in ascending order in the return
value.

By default objects are sorted by ascending REFSTR.

If objects do not have a value for the selected object class prop-
erty, these objects are sorted by ascending REFSTR and listed
first.

If either Language or DataCulture is set, and data translation
is enabled for the object class property, the values are sorted by
translated value. If no translation is provided for some of the ob-
ject class property values, these objects are sorted by ascend-
ing REFSTR and listed first.

Return value:

The return value is a JSON object with three fields:

• Count: The number of objects found in the database for that data is returned.

• RejectedObjects: The objects that were found but for that no data was returned because of
missing access permissions. The field contains a JSON list of objects with one JSON object for each
rejected Alfabet object. The object has a field RefStr that returns the REFSTR of the Alfabet object
and a field Message that gives information about the rejection.

• Objects: A JSON list of objects, each object representing a database object for that data is
returned.

{

"Objects": [...],

"Count": 3,

"RejectedObjects":[Array[0]]

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 58

The field Objects contains one JSON object per database object found for the call. The object contains the
following fields:

• ClassName: The name of the Alfabet object class the object belongs to.

• RefStr:The value of the REFSTR of the object.

• Values: A JSON object that includes all information defined about the object in the database via
object class properties. Each property is a field with a name corresponding to the property name.
The value of the field informs about the value of the property. The return value for a property
depends on the value type of the property:

Property
Type

Return value

String,
Text

The string, text is returned as string (in inverted commas):

"description":"This application manages customer
relations."

StringAr-
ray

All selected options of the string array are returned in one string:

"subcategories": "APP_SecurityAssessment
APP_CloseSubworkflow"

Boolean Boolean values are 1 for true, 0 for false or null if the property is not set:

"variant": 1

Real, Inte-
ger

Real and integer values are returned as number:

"xpos": 485.4

Date,
DateTime

Date and date time information is both returned as date strings of the format
yyyy-mm-dd:

"last_update": "2012-02-21"

URL URLs are returned as string (in inverted commas):

"url": "http://company.com/ReportServer"

Reference The REFSTR of the object the reference is targeting is returned:

"ictobject": "26-608-0"

Refer-
enceArray

For reference arrays, the REFSTRs of all objects that the current object references
with this property are listed in an array:

"applicationgroups": [3]

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 59

Property
Type

Return value

0: "95-38-0"

1: "95-8-0"

2: "95-9-0"

The return value is independent from the setting of the attribute RefSupport of
the property. If the attribute RefSupport of the property is set to false, the REF-
STR value of the reference targets are directly stored in the database table of the
object class in a column for the property. If the attribute RefSupport is set to
true, the references are stored in the RELATIONS table. This difference is not visi-
ble in the return value for the objects endpoint.

If information about the objects referenced by the current object shall be included
into the return value, you can use the method to find objects via a configured re-
port that is also available for the endpoint objects.

• Translations: This field is only available if the field DataCulture is defined in the payload of the
service call. The field contains a JSON list of object with one object per data culture. Each object has
a field DataCulture that returns the language for that translations are returned and one field
Values that is a JSON object with a field for each translated property. The value of the field informs
about the translated value of the property.

• GenericAttributes: If attributes are defined for the object via the object class
GenericAttribute, all generic attributes with the object class property Owner set to the current
object are listed in this field as a JSON list of objects. Each object in the list returns one object of the
class GenericAttribute, with the fields Refstr, Values and Translations that return data
about the generic attribute in the same format as returned for the main object.

Exporting Information About Objects Found By A Configured Report

A configured report returning a tabular dataset that is configured via the configuration tool Alfabet Expand
and stored in the Alfabet database can be used to export all or a subset of the data available about objects
in the Alfabet database. This method returns data about all objects found as base objects of the report.

For Alfabet queries, the base objects in the reports are the objects of the object class defined in
the FIND clause. In native SQL queries, the first column of the result set is not displayed in the
query results. It must specify the REFSTR of the object class selected as base class.

Please note that the base class can be changed to any other class for that data is added to the
result data set via the instruction SetRowReference.

The report can be used by the objects endpoint of the Alfabet RESTful API to deliver the following data
about the objects found by the query of the report:

• The response returns the data that is included in the report. The advantages of this method are the
following:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 60

• The subset of objects returned can depend on a specific parameter, like for example all
applications in an application group or all components that are having a defined indicator set
to a specific value.

• The information returned about the objects is configurable. That means that data can be
provided in the way and with the field names defined via the report. For example a reference
to another object is stored in the database table of the object in a column with the technical
name of the property and the value set to the REFSTR of the referenced object. The dataset in
the query can return this information in a column of a customer defined name with the name
of the referenced object instead of the REFSTR.

• The response returns information about all property values for all base objects found in the report
independent from the data defined in the dataset of the report. This method delivers the same result
per object as the method finding objects by REFSTR. The advantages of this method are the
following:

• The REFSTR of the objects must not be known to the client application when sending the
request.

• The subset of objects returned can depend on a specific parameter, like for example all
applications in an application group or all components that are having a defined indicator set
to a specific value.

• The response returns all REFSTR values of all base objects found in the report. This kind of response
is useful if the REFSTR values of a defined group of objects are required as input for example for
external applications that shall provide links that open the Alfabet user interface. For more
information see Accessing the Alfabet User Interface From the External Application.

For the execution of this endpoint methods, a configured report must be available before executing the
RESTful service call. The required configuration and the call are described in the following:

• Configuring a Report that Can be Called in a RESTful Service Request

• Service Call for Direct Execution of a Configured Report

• Service Calls for Execution of Offline Executed Reports

• Service Call for Triggering Offline Execution

• Checking the Status of the Asynchronous Report Execution

• Exporting Results from Asynchronous Report Execution

• Return Value for the ReportResultDataSet Asynchronous Report Execution Returning the Data
Defined In the Report

• Return Value for the ReportResultObjects Returning All Properties of the Objects Found in the
Report

• Return Value for the ReportResult Returning the REFSTR of the Objects Found in the Report

Configuring a Report that Can be Called in a RESTful Service Request

The configuration of configured report and the underlying queries in Alfabet Expand is described in detail in
the reference manual Configuring Alfabet with Alfabet Expand in the chapters Configuring Reports and

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 61

Defining Queries. This information is not repeated here. The following description is limited to additional
settings required for the report.

The following special requirements apply to the settings of the attributes of the report:

• The attribute Applicable for REST API of the configured report must be set to True.

• The report must be of the Type Query or NativeSQL.

• Long running configured reports can be configured to be executed offline. These configured reports
are executed asynchronously via the Alfabet RESTful services and require two service calls to export
data, one for triggering the execution and one for downloading the results. The execution of this
type of report is described separately in the following. Please note that there are a number of
restrictions for data export from configured reports that are executed asynchronously. Results can
only be downloaded in the original language. Translations are not provided. The options to use the
configured report as an object list and download only the REFSTR values or the complete set of
object class property values of the objects found by the configured report are not available.

The following special requirements apply to the query definition:

• SQL queries must return a REFSTR value as first argument. It is possible to create a report based on
native SQL returning data without coupling the data to a base object, for example by setting the first
argument in the SELECT statement to NULL. The return value of the Alfabet RESTful service call is
structuring the returned data by base object found by in the report. Therefore this kind of report
would result in no objects found. As a result, no data is displayed unless the instruction
SetRowReference is used to define the base object using another row in the dataset to identify the
base objects.

• Alfabet query language parameters can be used in Alfabet queries and native SQL queries. If the
configured report contains parameter definitions, it is not required to define a Report View with
filter definitions. The parameters are directly set in the service call.

• Alfabet query language instructions can be used in Alfabet queries and native SQL queries. The
dataset after execution of the instructions is used for the generation of the return values. For
example if the JoinColumns instruction is used in the configured report, the data joined in one
column will also be displayed in one field of the result JSON object. The instruction
SetRowReference alters the base object of the report data set and also for the return value of the
service call.

• The configured report must return a simple table. Grouped datasets are not processed correctly.
Data for subordinate levels is ignored.

Please note that the user that is used in the authorization of the RESTful service request must have a user
profile assigned that has access permissions to the configured report. If none of the user profiles assigned
to the user allows access to the configured report, no data is returned by the service request.

For information about configuring access permissions for configured reports, see the chapter
Defining and Managing User Access to Configured Reports in the reference manual User and So-
lution Administration. While the access permissions for a configured report on the Alfabet user
interface depend on multiple different factors, the access permissions for access to the config-
ured report via the RESTful service API only depend on the user profile related access permis-
sions defined for the configured report.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 62

Service Call for Direct Execution of a Configured Report

Endpoint name: objects

HTTP method: POST

Service call:

ServerAdress/api/v2/objects

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile":"UserProfile1",

"CurrentMandate":"Headquarters",

"Language": 1033,

"DataCulture": "fr-FR",

"ApiCulture": "APICultureReporting",

"EmptyValues": true,

"Report": "Report_1",

"ReportResult": "DataSet",

"Limit": 500,

"Offset": 250,

"ReportArgs":

{

"arg1": "val1",

"arg2": "val2",

}

}

It may have following fields:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 63

Field Manda-
tory/Op-
tional

Required Value

"Report":" Report-
Name "

Manda-
tory

The name of the configured report that the call is reading
data from. The name of the configured report is the value of
the property Name of the configured report.

ReportResult:"Da-
taSet/References/Ob-
jects"

Manda-
tory

ReportResult must be one of the following:

• DataSet to return all information included in the
report.

• References to return a list of REFSTR of the objects
found in the report

• Objects to return all property values set for all objects
found in the report

"Limit":Number Optional This field defines the maximum number of objects for that
the response of the call shall return data. This value may be
set to limit data return for reports including a high number of
objects. In combination with the field Offset this field can
be used to fetch the result of a big report in multiple steps.

If Limit is not set, a maximum number of 1000 result data
sets of the configured report are returned.

"Offset":Number Optional This field defines the start position for returning values in
the result data set of the configured report. For example if
the Limit field is set to 20 and the Offset is set to 10, the
results listed in row 11 to 30 in the tabular output of the con-
figured report are returned in the service call. By default, the
start position is the first row in the data set with the number
0.

"ReportArgs":

{

"arg1": "val1",

"arg2": "val2",

}

Optional If the configured report contains filter definitions, the values
to be set for the filters when executing the report via the
service call must be set with this field. The field value is a
JSON object with one field for each filter parameter of the
configured report. The field name must be identical to the
parameter name without the prefix @ or: and the field value
must be the value that shall substitute the parameter in the
query.

Please note the following:

• Values can be of the type integer, boolean or string.

• The wildcards % and * can be used in string values.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 64

Field Manda-
tory/Op-
tional

Required Value

• All filter definitions of the configured report must be
provided via the ReportArgs in the service call. If you
do not want to set one of the filter values, you can
define a wildcard only as value to return all results.

"Emp-
tyValues":true/false

Optional If EmptyValues is set to true, all object class properties of
the object are returned even if they are not set. If Emp-
tyValues is set to false, only object class properties of the
object that are set are returned. By default the attribute is
set to false.

"CurrentPro-
file":" UserProfile-
Name "

Manda-
tory

The name of a user profile assigned to the Alfabet user
sending the call that shall be used to access Alfabet. The
user profile is required to evaluate whether the user that is
sending the service call is allowed to read data about an ob-
ject. For details about the access permissions that depend
on the user profile, see the section Authorization.

"CurrentMan-
date":" MandateName "

Optional This field is only relevant if access to objects is controlled by
the mandate concept for federated architectures imple-
mented in Alfabet. The field must specify the name of a
mandate assigned to the Alfabet user sending the call. For
details about the consideration of mandate settings in REST
API service calls, see the section Controlling Access Via Man-
dates.

"Language":" Lan-
guageLCID "

Optional This field is only relevant if instance translation is used in
your Alfabet application and if the service call shall return all
properties of the objects found in the configured report, that
means ReportResult is set to Objects. The field must
specify the language code (LCID) decimal of the culture for
that translations are available in the Alfabet database. By
default the standard language of the database is returned.
Please note the following for the different settings of the
ReportResult field:

• DataSet: If the configured report is based on a native
SQL query, instance translations are only returned if
the translations are included into the native SQL
query via the Alfabet specific */CULTURE_CODE/*
statement. For more information about configuring
native SQL queries to return data translation values,
see Displaying Translated Object Data In the Current
Language of the User Interface in the reference
manual Configuring Alfabet with Alfabet Expand.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 65

Field Manda-
tory/Op-
tional

Required Value

• Objects: For object class properties defined as
translatable, values are returned in the selected
language only. If a translation is not available for a
translatable object class property, no value will be
returned, even if a value is provided in the standard
language.

To return all values in the original values and add transla-
tions in a second language, the parameter DataCulture
shall be used instead of the parameter Language.

Language supersedes DataCulture. If both fields are avail-
able, only Language is used.

"DataCulture":" Lan-
guageCode "

Optional This field is only relevant if instance translation is used in
your Alfabet application and translated values shall be re-
turned. The way data is returned depends on the setting of
the ReportResult field:

• Objects: The field has to specify the language code
of the culture for that translations are available in the
Alfabet database (for example de-DE for German), or
ALL to return translations for all languages that
provide translation. Translations are added to the
return value in addition to the values in the original
language in a separate field Translations.

• DataSet: The field has to specify the language code
of the culture for that translations are available in the
Alfabet database (for example de-DE for German).
The translated value will be returned instead of the
original language value in the return data set if the
object class property is translatable and translation is
provided. If no translation is available, the original
language will be used to return the value.

If the configured report is based on a native SQL query, in-
stance translations are only returned if the translations are
included into the native SQL query via the Alfabet specific
/CULTURE_CODE/ statement. For more information about
configuring native SQL queries to return data translation val-
ues, see Displaying Translated Object Data In the Current
Language of the User Interface in the reference manual
Configuring Alfabet with Alfabet Expand.

The field Language supersedes DataCulture. If both fields
are available, only Language is used and DataCulture is ig-
nored.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 66

Field Manda-
tory/Op-
tional

Required Value

"ApiCulture":" APICul-
tureName "

Optional This field specifies an API Culture defined in Alfabet Expand
as part of the configuration of the Alfabet meta-model. The
API Culture allows to define date, date/time and time pat-
terns as well as number formats that deviate from the
Alfabet standard. If this field is added to the request, dates,
times and numbers are written into the return value in the
formats specified in the API Culture definition. For more in-
formation, see the section Configuring Handling of Date,
Time and Number Formats For API Calls.

Please note however, that values defined in the ReportArgs
field must be defined in Alfabet default formats independent
from the API Culture.

Service Calls for Execution of Offline Executed Reports

Long running configured reports can be configured to be executed offline. These configured reports are
executed asynchronously and require a number of consecutive calls to the offlineExecution endpoint in
the given order. Details about the endpoints are given in the following sections:

1) Schedule asynchronous execution of the configured report via a call to the offlineExecution
endpoint with a JSON payload defining the execution details. A session token is returned. When the
returned estimated execution time has elapsed, the next service call can be scheduled.

2) Check the status for the report execution with the returned session token via a call to the
offlineExecution endpoint with the session token as parameter. When the returned status is
Succeeded, the next service call for download can be scheduled.

3) Download the results via a call to the endpoint offlineExecution with the session token and
additional download parameters. For configured reports returning a high number of records the
results can be exported step-wise via multiple service calls.

The following sections inform about the required calls:

• Service Call for Triggering Offline Execution

• Checking the Status of the Asynchronous Report Execution

• Exporting Results from Asynchronous Report Execution

Service Call for Triggering Offline Execution

Endpoint name: offlineExecution

HTTP method: POST

Service call:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 67

ServerAdress/api/v2/offlineExecution

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile":"UserProfile1",

"CurrentMandate":"Headquarters",

"Report": "Report_1",

"ReportArgs":

{

"arg1": "val1",

"arg2": "val2",

}

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Report":" Report-
Name "

Mandatory The name of the configured report that the call is reading data
from. The name of the configured report is the value of the prop-
erty Name of the configured report.

"ReportArgs":

{

"arg1":
"val1",

"arg2":
"val2",

}

Optional If the configured report contains filter definitions, the values to
be set for the filters when executing the report via the service
call must be set with this field. The field value is a JSON object
with one field for each filter parameter of the configured report.
The field name must be identical to the parameter name without
the prefix @ or: and the field value must be the value that shall
substitute the parameter in the query.

Please note the following:

• Values can be of the type integer, boolean or string. Dates
must be provided as string in the format.

• The wildcards % and * can be used in string values.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 68

Field Manda-
tory/Op-
tional

Required Value

• All filter definitions of the configured report must be
provided via the ReportArgs in the service call. If you do
not want to set one of the filter values, you can define a
wildcard only as value to return all results.

"CurrentPro-
file":" UserPro-
fileName "

Mandatory The name of a user profile assigned to the Alfabet user sending
the call that shall be used to access Alfabet. The user profile is
required to evaluate whether the user that is sending the service
call is allowed to read data about an object. For details about the
access permissions that depend on the user profile, see the sec-
tion Authorization.

"CurrentMan-
date":" Man-
dateName "

Optional This field is only relevant if access to objects is controlled by the
mandate concept for federated architectures implemented in
Alfabet. The field must specify the name of a mandate assigned
to the Alfabet user sending the call. For details about the consid-
eration of mandate settings in REST API service calls, see the
section Controlling Access Via Mandates.

Return value:

The return value is a JSON object in the following format:

{

"Count": 0,

"Name": "RESTReportLongRunning",

"Description": "This configured report is executed offline",

"OfflineExecutionResultStatus": "Queued",

"OfflineExecutionToken": "ux4zv0r13ocrv1t6dca3zrzi5",

"OfflineExecutionErrorMessage": ""

"EstimatedOfflineExecutionTime": "00:05:00"

}

The following information is provided:

• OfflineExecutionToken: A token that has to be added to the service calls to check the report
execution status and to export the report results.

• EstimatedOfflineExecutionTime: The estimated execution time in minutes that to be used as
default setting in the Estimated Execution Time attribute of the configured report. The next call for
checking the execution result should be scheduled after the estimated offline execution time.

• Name: The name of the configured report scheduled for execution.

• Description: The text provided with the Description attribute of the configured report.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 69

• OfflineExecutionResultStatus: The status of the offline execution is Queued after successful
scheduling of report execution.

• OfflineExecutionErrorMessage: If an error occures, this field will provide details about the error.
After successful execution this field will be empty.

• Count: This field is not relevant.

Checking the Status of the Asynchronous Report Execution

Endpoint name: offlineExecution

HTTP method: GET

Service call:

ServerAdress/api/v2/offlineExecution?offlineExecutionId=OfflineExecutionToke
n

with the following parameters:

Parameter Manda-
tory/Optional

Required Value

offlineExecutionId= Of-
flineExecutionToken

Mandatory The OfflineExecutionToken from the return
value of the service call scheduling report execu-
tion.

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Return value:

The return value is a JSON object in the following format:

{

"Count": 170,

"OfflineExecutionResultStatus": "Succeeded",

"OfflineResultExpirationDateTime": "2020-07-22T10:51:39.29"

}

The following information is provided:

• Count: The number of records returned.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 70

• OfflineExecutionResultStatus: Returns Succeeded if results are available. During execution,
the status is NotReady.

• OfflineResultExpirationDateTime: Informs about the date and time at which the report results
will be deleted. Offline execution results are available for a time period defined in the configured
report with the Offline Result Retention Time attribute.

• Error Message: If the call has failed, this field gives details about the error that occurred.

• Error Code: If the call has failed, this field returns the error code of the web services.

Exporting Results from Asynchronous Report Execution

Endpoint name: offlineExecution

HTTP method: GET

Service call:

ServerAdress/api/v2/offlineExecution?offlineExecutionId=OfflineExecutionToke
n&offset=StartRowNumber&limit=NumberOfResults

with the following parameters:

Parameter Manda-
tory/Op-
tional

Required Value

offlineExecu-
tionId= Of-
flineExecu-
tionToken

Mandatory The OfflineExecutionToken from the return value of the service
call scheduling report execution.

limit= Number-
OfResults

Mandatory The number of records from the result data set of the configured
report that shall be returned by the call.

offset= Star-
tRowNumber

Mandatory The start position for returning values in the result data set of the
configured report. For example if the limit parameter is set to 20
and the offset parameter is set to 10, the results listed in row 11 to
30 in the tabular output of the configured report are returned in the
service call. By default, the start position is the first row in the data
set with the number 0.

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 71

Return value:

For information about the return value, see XXX.

Return Value for the ReportResultDataSet Asynchronous Report Execution Returning the Data Defined
In the Report

The return value is a JSON object with four fields:

• Count: The number of rows in the data set of the configured report the service call is based on.

• Name: The name of the configured report the data is derived from as defined in the attribute Name of
the configured report.

• Description: The description for the configured report the data is derived from as defined in the
attribute Description of the configured report.

• Objects: A JSON list of objects, each object representing a row in the data set of the configured
report. Information about the base object of the row and the values in the row of the report are
given.

{

"Objects": [...]

"Count": 3,

"Name": "ReportName",

"Description": "Report Description"

}

The field Objects contains one JSON object per row in the data set of the configured report. The object
contains the following fields:

• ClassName: The name of the Alfabet object class the base object of the current row belongs to.

• RefStr:The value of the REFSTR of the base object of the current row.

• Values: A JSON object that includes all information defined in the cells of the current row of the
configured report. Each column in the dataset is a field with a name corresponding to the column
name. The value of the field informs about the value in the current row. All values are returned as
strings.

Return Value for the ReportResultObjects Returning All Properties of the Objects Found in the Report

The return value lists all object class properties set for all base objects of the configured report.

The return value is a JSON object with four fields:

• Count: The number of rows in the data set of the configured report the service call is based on. The
count may differ from the number of objects for that data is returned. The report might display
multiple rows for the same base object. In that case each base object is only considered once.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 72

• Name: The name of the configured report the data is derived from as defined in the attribute Name of
the configured report.

• Description: The description for the configured report the data is derived from as defined in the
attribute Description of the configured report.

• Objects: A JSON list of objects, each object representing a database object for that data is
returned.

{

"Objects": [...]

"Count": 3

}

The field Objects contains one JSON object per database object found for the call. The object contains the
following fields:

• ClassName: The name of the Alfabet object class the object belongs to.

• RefStr:The value of the REFSTR of the object.

• Values: A JSON object that includes all information defined about the object in the database via
object class properties. Each property is a field with a name corresponding to the property name.
The value of the field informs about the value of the property. The return value for a property
depends on the value type of the property:

Property
Type

Return value

String,
Text

The string, text is returned as string (in inverted commas):

"description":"This application manages customer
relations."

StringAr-
ray

All selected options of the string array are returned in one string:

"subcategories": "APP_SecurityAssessment
APP_CloseSubworkflow"

Boolean Boolean values are 1 for true, 0 for false or null if the property is not set:

"variant": 1

Real, Inte-
ger

Real and integer values are returned as number:

"xpos": 485.4

Date,
DateTime

Date and date time information is both returned as date strings of the format
yyyy-mm-dd:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 73

Property
Type

Return value

"last_update": "2012-02-21"

URL URLs are returned as string (in inverted commas):

"url": "http://company.com/ReportServer"

Reference The REFSTR of the object the reference is targeting is returned:

"ictobject": "26-608-0"

Refer-
enceArray

For reference arrays, the REFSTRs of all objects that the current object references
with this property are listed in an array:

"applicationgroups": [3]

0: "95-38-0"

1: "95-8-0"

2: "95-9-0"

The return value is independent from the setting of the attribute RefSupport of
the property. If the attribute RefSupport of the property is set to false, the REF-
STR value of the reference targets are directly stored in the database table of the
object class in a column for the property. If the attribute RefSupport is set to
true, the references are stored in the RELATIONS table. This difference is not visi-
ble in the return value for the objects endpoint.

If information about the objects referenced by the current object shall be included
into the return value, you can use the method to find objects via a configured re-
port that is also available for the endpoint objects.

• GenericAttributes: If attributes are defined for the object via the object class
GenericAttribute, all generic attributes with the object class property Owner set to the current
object are listed in this field as a JSON list of objects. Each object in the list returns one object of the
class GenericAttribute, with the fields Refstr, Values and Translations that return data
about the generic attribute in the same format as returned for the main object.

Return Value for the ReportResult Returning the REFSTR of the Objects Found in the Report

The return value includes all REFSTR values for the base object of each row in the configured report.

The return value is a JSON object with four fields:

• Count: The number of rows in the data set of the configured report the service call is based on.

• Name: The name of the configured report the data is derived from as defined in the attribute Name of
the configured report.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 74

• Description: The description for the configured report the data is derived from as defined in the
attribute Description of the configured report.

• Refs: A JSON array containing the REFSTR values of the base objects in the report. The array can
contain a REFSTR value multiple times if the base object of multiple rows is identical.

{

"Refs": ["95-36-0","95-43-0","95-41-0"]

"Count": 3

}

Deleting Objects from the Alfabet database

The endpoint delete provide a means to delete objects and relations from the Alfabet database. A relation
is a reference from one object to another object that is stored in a property of the type Reference Array.
Most reference arrays are stored in the relations table of the Alfabet database.

For detailed information about the storage of relations in the Alfabet database see the chapter
The Alfabet Meta-Model in the Alfabet Database in the reference manual Alfabet Data Integra-
tion Framework.

The request must include the definition of the database manipulation in the body of the request in JSON
format.

Endpoint name: delete

HTTP method: POST

Service call:

ServerAdress/api/v2/delete

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile": "UserProfile1",

"CurrentMandate": "Mandate1",

"Refs": ["76-2518-0","76-3246-0","405-3-0"],

"Relations": [{

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 75

"FromRef": "76-2518-0",

"Property": "BelongsTo",

"ToRef": "76-3246-0"

},

{...}]

}

It may have following fields:

Field Manda-
tory/Op-
tional

Required Value

"Refs":[" RefstrOfOb-
ject "," RefstrOfObject "]

Optional An array containing one or multiple values of the
REFSTR property of objects in the Alfabet database
that shall be deleted.

"Relations": [{

"FromRef":
"RefstrOfObject",

"Property":
"PropertyName",

"ToRef":
"RefstrOfObject"

},

{...}]

Optional A JSON list of objects, each objects representing a
relation to be deleted. For each relation that shall be
deleted, the following fields must be defined:

• FromRef: The REFSTR of the object for that
the relation is defined via one of its object
class properties.

• Property: The value of the Name attribute
of the object class property for that the
relation is stored.

• ToRef: The REFSTR of the object to that the
relation is built.

"CurrentProfile":" UserPro-
fileName "

Manda-
tory

The name of a user profile assigned to the Alfabet
user sending the call that shall be used to access
Alfabet. The user profile is required to evaluate
whether the user that is sending the service call
has write permissions to an object. For details about
the access permissions that depend on the user
profile, see the section Authorization.

"CurrentMandate":"Man-
dateName"

Optional This field is only relevant if access to objects is con-
trolled by the mandate concept for federated archi-
tectures implemented in Alfabet. The field must
specify the name of a mandate assigned to the
Alfabet user sending the call. For details about the
consideration of mandate settings in REST API ser-
vice calls, see the section Controlling Access Via
Mandates.

Return value:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 76

The return value is a JSON object with one field "Count" that informs about the number of objects and re-
lations that were deleted.

Creating and Updating Object Data in the Alfabet database

The endpoint update provide a means to alter the content of the Alfabet database. New objects can be
created for Alfabet object classes, properties of existing objects can be changed, and relations between
objects can be created. The request must include the definition of the database manipulation in the body of
the request in JSON format.

As a result of the service call, the content of the Alfabet database is changed and a return value is sent that
confirms the change.

Endpoint name: update

HTTP method: PUT

Service call:

ServerAdress/api/v2/update

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json;charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile":"UserProfile1",

"CurrentMandate": "Mandate1",

"ApiCulture": "ApiCultureName",

"Objects": [...],

"Relations": [...],

}

It may have following fields:

Field Manda-
tory/Op-
tional

Required Value

"Objects" Optional An array containing the specification of the objects and the data that shall
be changed for the objects. Details are described below in the sections

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 77

Field Manda-
tory/Op-
tional

Required Value

Creating a new Object in the Alfabet database and Changing the Properties
of an existing Object in the Alfabet database.

"Rela-
tions"

Optional An array containing the specification of the references that shall be
changed. Details are described below in the section Creating or Updating a
Relation Between Objects in the Alfabet database.

"Cur-
rentPro-
file"

Mandatory The name of a user profile assigned to the Alfabet user sending the call that
shall be used to access Alfabet. The user profile is required to evaluate
whether the user that is sending the service call has write permissions to an
object. For details about the access permissions that depend on the user
profile, see the section Authorization.

"Current-
Mandate"

Optional This field is only relevant if access to objects is controlled by the mandate
concept for federated architectures implemented in Alfabet. The field must
specify the name of a mandate assigned to the Alfabet user sending the
call. For details about the consideration of mandate settings in REST API
service calls, see the section Controlling Access Via Mandates.

"ApiCul-
ture"

Optional This field specifies an API Culture that was defined in Alfabet Expand as part
of the configuration of the Alfabet meta-model. The API Culture allows to
define data, date/time and time patterns as well as number formats that
deviate from the Alfabet standard. If this field is added to the request,
dates, times and numbers can be defined in the object data definitions for
update of object data in the formats specified in the API Culture definition.
For more information, see the section Configuring Handling of Date, Time
and Number Formats For API Calls.

The following sections describe the different kind of operations and the required JSON request:

• Creating a new Object in the Alfabet database

• Changing the Properties of an existing Object in the Alfabet database

• Creating or Updating a Relation Between Objects in the Alfabet database

A single JSON request can include multiple different operations, that means you can for example create
new objects and update data of existing objects in the same request.

The update of the data in the Alfabet database requires knowledge about the object class config-
uration of the Alfabet meta-model and/or existing object data.

• Information about the current definition of object classes and object class properties can
be retrieved via the endpoint metamodel.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 78

• Information about the current object data can be retrieved via the endpoint select or
object.

• For basic information about the structure of the Alfabet class model that is required to
perform data manipulation directly on the database level, see The Alfabet Meta-Model in
the Alfabet Database in the reference manual Alfabet Data Integration Framework.

Return value:

The return value is a JSON object informing about changes performed and errors that occurred, for exam-
ple when creating a two new objects, the return value is:

{

"NewObjects": {

1: "95-61-0"

2: "95-62-0" }

"Count": 2

}

The return value can have the following fields:

Field Value

"NewOb-
jects"

This field contains a JSON object with one field for each new object. The field name is
the Id defined in the request and the field value is the value of the REFSTR property of
the new object in the Alfabet database. If the request only updates objects, this field is
empty.

"Access
Denied"

This field contains a JSON object with a field for each object for that access is denied for
example because of mandate settings. The field name is the REFSTR value of the object
and the field value is the reason for denial of access.

"Re-
jectedOb-
jects"

This field informs about object that could not be created or changed. The field contains
a JSON list of objects with one JSON object for each rejected change to an Alfabet ob-
ject. The object has a field RefStr that returns the REFSTR of the Alfabet object and a
field Message that gives information about the rejection.

"NotFound" If a relation shall be created and one or both of the involved objects does not exist in the
Alfabet database, the call displays a NotFound field containing an array with the REFSTR
values that could not be found.

"Count" This fields informs about the number of objects and relations that were updated or cre-
ated.

Please note that the count for update and deletion of relations is not always identical to
the number of relations that were requested to be updated or deleted via the call. This is
due to internal mechanisms like for example back relations that lead to two relations to

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 79

Field Value

be changed if one relation is requested to be changed. The returned count can therefore
not be used to check the completeness of request execution.

Creating a new Object in the Alfabet database

The JSON object of the request to create a one or multiple new objects contains the following fields:

• CurrentProfile: The name of the user profile that shall be used for the user when performing the
call. The permission to create an object of an object class in the Alfabet database is evaluated via the
user profile. Detailed information is given in the section. The field is optional. If it is not included, the
last user profile the user was logged in with is used for the call. If the information about the user
profile of the last log in is not found, the user profile defined as default profile for the user in the user
settings of the user is used as default for the field.

• Objects: A definition of object data that shall be created. Details are given below.

The value of the field Objects is a JSON list of objects, each object defining one Alfabet object to be cre-
ated with the following fields:

Field
name

Required Value Remark

Class-
Name

The value of the Name attribute of the Alfabet object
class for that the object shall be created.

Id An integer that is a unique identifier inside the JSON
request.

Each object created in a single JSON
request must have a different id. The
id is only used within the single JSON
request. It is not having any impact
on the Alfabet database. As soon as
the objects are created, the ids are
no longer coupled to the objects and
can be used in other service calls.

Values A JSON object with one field for each property that
shall be defined.

The field name is identical to the Name of the object
class property written in lower case letters.

The field value is identical to the value of the object
class property of the created object.

At least all properties defined as
mandatory must be set for an object
to create the object.

The property REFSTR cannot be de-
fined in the JSON request. It is set
automatically during creation of the
object and returned in the return
value of the service call. Technical
properties like creation date and cre-
ation user are also automatically set
during creation of the object.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 80

Field
name

Required Value Remark

Properties with the attribute Auto-
matically Managed set to true must
not be set via this mechanism.

Properties of the type Reference and
ReferenceArray cannot be updated
with this mechanism. For information
about the update of properties of the
type Reference and ReferenceArray
see Creating or Updating a Relation
Between Objects in the Alfabet data-
base.

The value must match the format
and restrictions that apply to the ob-
ject class property. For example a
string length restriction might be im-
plemented for an object class prop-
erty of the type string. Dates must be
defined in the format yyyy-mm-dd.

Transla-
tions

A list of JSON objects, each object representing a
translation and having two fields: the field DataC-
ulture that defines the language code of the data
culture (for example fr-FR) and the field Values,
that contains a field for each translation to be added
with the field name being identical to the property
name and the field value being identical to the trans-
lation that shall be added.

This field is optional and shall be
added if translations of object class
names and descriptions shall be pro-
vided for one or multiple data cul-
tures specified in Alfabet Expand
that are defined to allow data trans-
lation.

Gener-
icAt-
trib-
utes

A JSON list of objects, with one JSON object for each
generic attribute to create or update. Each JSON ob-
ject has three fields:

• RefStr: The field must be defined with an
empty value to create a new generic attribute.

• Values: A JSON object with one field for each
property that shall be updated. Required fields
are Name, Type and Value. The field Group is
optional. The property Owner of the object
class GenericAttribute must not be
specified. It is set by the import mechanism to
the REFSTR to the object the generic attribute
is defined for.

• Translations: If the name of the generic
attribute shall be translated, a field translation
can be specified as described above for the
main object.

The object class GenericAttribute
stores properties for different object
classes. If generic attributes shall be
defined for objects created via an
endpoint update, generic reference
data must be created directly within
the request for the object it belongs
to.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 81

The following example shows the required JSON request for creating two application groups
with a translation into two languages and a generic attribute:

{

"CurrentProfile": "RESTAccessProfile";

"Objects": [{

"ClassName": "ApplicationGroup",

"Id": "1",

"Values": {

"name": "Test Group 1",

"shortname": "TestG1"

}

"Translations":[

{"DataCulture": "de-DE",

"Values":{"name": "Testgruppe 1"}

},

{"DataCulture": "fr-FR",

"Values":{"name": "Groupe Controle 1"}

}

]

]

},

{

"ClassName": "ApplicationGroup",

"Id": "2",

"Values": {

"name": "Test Group 2",

"shortname": "TestG2"

},

"Translations":[

{"DataCulture": "de-DE",

"Values":{"name": "Testgruppe 2"}

},

{"DataCulture": "fr-FR",

"Values":{"name": "Groupe Controle 2"}

}

],

"GenericAttributes": [{

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 82

"RefStr": "",

"Values": {"Name": "Integer Attribute 1",

"Group": "",

"Type": "Integer",

"Value": "99999"},

"Translations": [{

"DataCulture": "de-DE",

"Values": {"Name": "Integer-Attribut"}

}]

}]

}]

}

Changing the Properties of an existing Object in the Alfabet database

To update property values for an existing object in the Alfabet database, the JSON object of the request
must contain a field Objects. The value of this field is a JSON list of objects, each object defining one
Alfabet object to be updated with the following fields:

Field
name

Required Value Remark

REF-
STR

The value of the REFSTR property of
the object that shall be updated.

Val-
ues

A JSON object with one field for each
property that shall be updated.

The field name is identical to the
Name of the object class property
written in lower case letters.

The field value is identical to the new
value that shall be set for the object
class property.

• Properties with the attribute Automatically
Managed set to true must not be set via this
mechanism.

• Properties of the type Reference and
ReferenceArray cannot be updated with this
mechanism. For information about the update
of properties of the type Reference and
ReferenceArray see Creating or Updating a
Relation Between Objects in the Alfabet
database.

• The value must match the format and
restrictions that apply to the object class
property. For example a string length
restriction might be implemented for an object
class property of the type string.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 83

Field
name

Required Value Remark

• Dates must be defined in the format yyyy-
mm-dd.

• Object class properties of the data type Url or
Email consist of a name and the actual
web/email address separated with \r\n. For
example:

Software
Ag\r\nwww.softwareag.com

If no \r\n is available in the definition, the provided
string is saved as web/email address.

Trans-
lations

A list of JSON objects, each object
representing a translation and having
two fields: the field DataCulture that
defines the language code of the data
culture (for example fr-FR) and the
field Values, that contains a field for
each translation to be added with the
field name being identical to the prop-
erty name and the field value being
identical to the translation that shall
be added.

This field is optional and shall be added if translations
of object class names and descriptions shall be pro-
vided for one or multiple data cultures specified in
Alfabet Expand that are defined to allow data transla-
tion.

Ge-
neri-
cAt-
trib-
utes

A JSON list of objects, with one JSON
object for each generic attribute to
create or update. Each JSON object
has three fields:

• RefStr: For updates, the value
of the field must be the REFSTR
of the existing generic
attribute. For creating a new
generic attribute, the field must
be defined with an empty
value.

• Values: A JSON object with
one field for each property that
shall be updated. Required
fields are Name, Type and
Value. The field Group is
optional. The property Owner of
the object class Generic
Attribute must not be specified.
It is set by the import
mechanism to the REFSTR to

The object class GenericAttribute stores proper-
ties for different object classes. If generic attributes
shall be defined via an endpoint update, generic ref-
erence data must be updated or created directly
within the update request for the object it belongs to.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 84

Field
name

Required Value Remark

the object the generic attribute
is defined for.

• Translations: If the name of
the generic attribute shall be
translated, a field translation
can be specified as described
above for the main object.

The following example shows the required JSON request for updating two application groups in-
cluding translation of the names for the two objects:

{

"Objects": [{

"RefStr": "95-61-0",

"Values": {

"shortname": "TG1",

"status": "Planned"

}

"Translations":[

{"DataCulture": "de-DE",

"Values":{"name": "Testgruppe 1"}

},

{"DataCulture": "fr-FR",

"Values":{"name": "Groupe Controle 1"}

}

]

"GenericAttributes": [{

"RefStr": "",

"Values": {"Name": "Integer Attribute 1",

"Group": "",

"Type": "Integer",

"Value": "99999"},

"Translations": [{

"DataCulture": "de-DE",

"Values": {"Name": "Integer-Attribut"}

}]

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 85

}]

},

{

"RefStr": "95-62-0",

"Values": {

"shortname": "TG2",

}

"Translations":[

{"DataCulture": "de-DE",

"Values":{"name": "Testgruppe 1"}

},

{"DataCulture": "fr-FR",

"Values":{"name": "Groupe Controle 1"}

}

]

}]

}

Creating or Updating a Relation Between Objects in the Alfabet database

Relations can be created between objects that already exist in the Alfabet database. If an object does not
exist, the relation is not set and the REFSTR of the object or objects that could not be found is returned in
an array in a JSON field NotFound in the return value.

A relation between two objects is established via a property of one of the objects that is of the type Refer-
ence or ReferenceArray. Although different mechanisms exist for storage of relations for properties of the
type Reference and ReferenceArray, these differences are of no importance for the definition of the rela-
tion in the service call. This is handled by the Alfabet RESTful API on server side.

If a relation is defined that already exists in the Alfabet database, the following happens:

• If the object class property storing the relation is of the Type Reference, the existing reference is
overwritten.

• If the object class property storing the relation is of the Type ReferenceArray, the new reference
is added to the array and existing references persist. If you want a relation of the
Type ReferenceArray to be substituted, you must delete the old relation with a service request of
the endpoint delete and create a new one with this service request.

For the request send with the service call, the following information must be provided:

• Definition of the "from" object. This is the object for that the property establishing the relation is
defined.

• Definition of the "to" object. This is the object to that the relation is established.

• Definition of the property establishing the relation.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 86

To create a new relation, the JSON object of the request must contain a field Relations. The value of this
field is a JSON list of objects, each object defining one relation between Alfabet objects to be created or
updated with the following fields:

Field
name

Required Value

FromRef The value of the REFSTR property of the Alfabet object for that the property establishing
the relation is defined.

Property The value of the Name attribute of the object class property establishing the relation.

ToRef The value of the REFSTR property of the Alfabet object to that the relation is established.

The following example shows a JSON request that updates a property of the type Reference and
creates a relation for a property of the type ReferenceArray. The updated object is an application
group. The property ResponsibleUser is of the type Reference. The existing reference to a re-
sponsible user is therefore overwritten with the relation defined in the request. The property Ap-
plications is of the type ReferenceArray. The relation defined in the request is added to al-
ready existing relations:

{

"Relations": [{

"FromRef": "95-61-0",

"Property": "ResponsibleUser",

"ToRef": "421-862-0"

},

{

"FromRef": "95-61-0",

"Property": "Applications",

"ToRef": "76-2518-0"

}]

}

Archiving Objects from the Alfabet database

The endpoint archiveobject provide a means to create an archive ZIP file for one or multiple selected ob-
jects from the Alfabet database. The object can optionally be deleted after creating the archive ZIP file.

When an Alfabet object is archived, a ZIP file is created containing HTML files that display the object profile
for the archived object as well as the object profiles of its dependent objects. Each archived object profile

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 87

displays a preconfigured set of page views, whereby the visibility of these views will depend on the class
setting configured for the object class. If a page view displays dependent objects, a user can click the de-
pendent object in the HTML view in order to open another HTML file showing the archived object profile of
the selected dependent object.

Alfabet objects are typically archived by a solution administrator in the Simple Search functionality of the
Admin user profile. If an archive is created via the Alfabet user interface, the archived Alfabet object is de-
leted from the Alfabet database after generation of the archive ZIP file. In the Archive Manager functional-
ity of the Admin user profile, the archive ZIP file is then available for download to a local disk. After extract-
ing the ZIP file, the relevant HTML file can then be viewed in a browser window. The archive ZIP file con-
tains one folder for each culture setting supported by your enterprise.

This functionality is especially useful in order to remove outdated objects from the Alfabet database and
thus enhance the performance of Alfabet. The archived data can be saved and displayed when needed in a
Web browser.

For information about the archiving of Alfabet objects via the Alfabet user interface, see Deleting
and Archiving Alfabet Objects in the reference manual User and Solution Administration.

Archiving of objects via a RESTful service call provides more flexibility:

• An archive can be created without deleting the object.

• Archives can either be made available in the Archive Manager functionality of the Alfabet user
interface only, or they can additionally be directly stored in a defined folder on the local file system
directly during the execution of the RESTful service call.

The request must include the definition of the archiving and database manipulation in the body of the re-
quest in JSON format.

Endpoint name: archiveobject

HTTP method: POST

Service call:

ServerAdress/api/v2/archiveobject

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile": "UserProfile1",

"CurrentMandate": "Mandate1",

"CurrentCulture": "1033",

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 88

"Refs": ["76-2518-0","76-3246-0","405-3-0"],

"DeleteAfterArchive": "true",

"ZipPath":"C:\\ArchiveObject\\Applications"

}

It may have following fields:

Field Manda-
tory/Op-
tional

Required Value

"Refs":[" RefstrO-
fObject "," RefstrO-
fObject "]

Mandatory An array containing one or multiple values of the REFSTR
property of objects in the Alfabet database that shall be ar-
chived or archived and deleted.

"CurrentPro-
file":" UserProfile-
Name "

Mandatory The name of a user profile assigned to the Alfabet user send-
ing the call that shall be used to access Alfabet. The user pro-
file is required to evaluate whether the user that is sending
the service call has write permissions to an object. For details
about the access permissions that depend on the user profile,
see the section Authorization.

"CurrentMan-
date":" Man-
dateName "

Optional This field is only relevant if access to objects is controlled by
the mandate concept for federated architectures imple-
mented in Alfabet. The field must specify the name of a man-
date assigned to the Alfabet user sending the call. For details
about the consideration of mandate settings in REST API ser-
vice calls, see the section Controlling Access Via Mandates.

"CurrentCulture":
" LCID decimal "

Optional The language code (LCID) decimal of the culture that shall be
used for messages in the return value. The culture must be a
culture for that translations are available via the vocabulary
files in the Alfabet database. By default, the message in the
return value are English.

"ZipPath":" Abso-
lutePathToFolder "

Optional The absolute path to the folder on the local file system in
which the archive should be stored in addition to being stored
in the Alfabet database. If the folder does not exist, it is cre-
ated during execution of the service call.

If this field is not set, the archive is only stored in the Alfabet
database and available for download via the Archive Manager
functionality on the Alfabet user interface.

Please note that the back slashes in the path must be written
as double back slashes to be accepted as text in the JSON
definition.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 89

Field Manda-
tory/Op-
tional

Required Value

"DeleteAfterAr-
chive": "true|false"

Optional Set the field value to true if the object shall be deleted after
generation of the archive. By default, the object is not deleted
after generation of the archive.

Additional access rights are required for deletion of the ob-
ject. If you set the field to true and the permissions for the
user and user profile for processing the call are not sufficient
to delete the object, the archive is also not created, even if
the permissions for creating archives are given.

Return value:

The return value is a JSON object with one field "ResultMessages" that informs about the success status
in a separate field per object in the format "REFSTR of object":"Message".

{

"ResultMessages": {

"95-44-0": "Instance not found",

"76-3200-0": "Access denied:’Instance cannot be deleted'",

"95-43-0": "Object successfully archived."

}

}

Regenerating the Password of an Alfabet User

The endpoint regeneratepassword provide a means to reset the password of a user or to create an initial
password for a new user. A password is automatically assigned to the users and the user receives emails
informing the him/her about the login credentials.

This functionality includes sending emails to the user via the system. You must ensure that sys-
tem emails are activated for your Alfabet installation. For more information about activating the
sending of emails, see the section Activating the Dispatch of Email Notifications in Alfabet in the
reference manual System Administration. For more information about specifying the message in
the emails or configuring custom text templates to use in place of the standard text templates,
see the section Specifying Custom Text Templates for Password Generation in the reference
manual Configuring Alfabet with Alfabet Expand and the section Text Templates for Activation of
User Passwords in the reference manual Configuring Alfabet with Alfabet Expand - Appendix.

Password regeneration actions are logged in a log file. This is by default the file PasswordChangeLog.txt
in the working directory of the Alfabet Web Application. For information about how to change the location
of the log file, see Defining the Location of the Log File for Password Reset and Regeneration Actions in the
reference manual.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 90

For general information about the configuration and administration requirements for user login
via user name and password, see Configuring Standard Login in the reference manual System
Administration.

The request must include the definition of the archiving and database manipulation in the body of the re-
quest in JSON format.

Endpoint name: regeneratepassword

HTTP method: POST

Service call:

ServerAdress/api/v2/regeneratepassword

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"CurrentProfile": "UserProfile1",

"CurrentCulture": "1033",

"Refs": ["421-2518-0","421-3-0"],

"UserNames:["CUSTOMER","CLIENTE"]

}

It may have following fields:

Field Manda-
tory/Op-
tional

Required Value

"Refs":[" RefstrOfOb-
ject "," RefstrOfOb-
ject "]

Optional An array containing one or multiple values of the REFSTR
property of the users (object class Person) in the Alfabet
database for which the password should be regenerated.

"UserNames":["CUS-
TOMER","CLIENTE"]

Optional An array containing one or multiple user names of users
(USER_NAME property of the object class Person) in the
Alfabet database for which the password should be regen-
erated.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 91

Field Manda-
tory/Op-
tional

Required Value

"CurrentPro-
file":" UserProfile-
Name "

Mandatory The name of a user profile assigned to the Alfabet user
sending the call that shall be used to access Alfabet. The
user profile is required to evaluate whether the user that is
sending the service call has write permissions to an object.
For details about the access permissions that depend on
the user profile, see the section Authorization.

"CurrentCulture":
" LCID decimal "

Optional The language code (LCID) decimal of the culture that shall
be used for messages in the return value. The culture must
be a culture for that translations are available via the vo-
cabulary files in the Alfabet database. By default, the mes-
sage in the return value are English.

Return value:

The return value is a JSON object with one field "ResultMessages" that informs about the success status
in a separate field per defined user in the format "REFSTR of user":"Message" or "User Name": "Message".

{

"ResultMessages": {

"421-2518-0": "User not found",

"421-3-0": "Password successfully changed.",

"CUSTOMER": "Password successfully changed.",

"CLIENTE": "Password successfully changed."

}

}

Anonymizing User Data For Selected Users

This endpoint can be used to anonymize the data of one or multiple selected Alfabet users. The endpoint
will only anonymize the data if the following preconditions are met:

• Anonymization is enabled in the Alfabet database for the object class Person. For more information
about the anonymization feature and the required configuration to enable it, see Anonymizing Data
in the reference manual Configuring Alfabet with Alfabet Expand.

• The user is not configured to be excluded from anonymization. For more information about
excluding users from anonymization, see Excluding Users from Anonymization in the reference
manual Configuring Alfabet with Alfabet Expand.

• The Alfabet user used to execute the call has the required access permission Has AnonymizeUser
Access. For more information about access permissions for REST API service calls, see Generating a
REST API Password for a User.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 92

Data anonymization is an irreversible action!

Endpoint name: anonymizeuser

HTTP method: PUT

Service call:

ServerAdress/api/v2/anonymizeuser

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"Refs": ["421-5-0","421-9-0"]

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Refs":[" RefstrOfOb-
ject "," RefstrOfOb-
ject "]

Mandatory An array containing one or multiple values of the REFSTR
property of objects of the object class Person with the
stereotype User in the Alfabet database. All users in-
cluded into the array will be anonymized.

Return value:

The return value is a JSON object with three fields:

• Count: The number of users that have been anonymized.

• RejectedObjects: A JSON list of objects that were not anonymized, for example because the user
is excluded from anonymization. The field contains a JSON list of objects with one JSON object for
each rejected Alfabet object. The object has a field RefStr that returns the REFSTR of the Alfabet
object and a field Message that gives information about the rejection.

{

"Count": 3,

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 93

"RejectedObjects":{

"RefStr": "421-999-0",

"Message": "Cannot find instance"

}

}

Starting a Workflow via RESTful Service Call

This endpoint can be used to start a workflow that is configured to be automatically started and to allow
start via REST API.

Endpoint name: workflow

HTTP method: POST

Service call:

ServerAdress/api/v2/workflow

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"WorkflowTemplate": "WorkflowTemplateName"

}

It may have the following fields:

Field Mandatory/Op-
tional

Required Value

"WorkflowTemplate":" WorkflowTem-
plateName "

Mandatory The name of the workflow template
that shall be started.

Return value:

The return value is a JSON object that can show the following fields:

• ResultMessage: A message informing about the number of workflows that have been started.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 94

• ErrorMessage: If starting of the workflow fails, this field informs about the reason for that.

• ErrorCode: If starting of the workflow fails, this field returns the error code for the error. This
information is only relevant if you can not fix the problem because of the information in the error
message. You can then send the error code and error message to your system administrator for
support.

{

"ResultMessage": "3 new workflows have been created."

}

Starting an ADIF Import via RESTful Service Call

A set of endpoints can be used to start an ADIF import based on an ADIF import scheme stored in the
Alfabet database targeted by the REST API call.

The following attribute settings are required on the ADIF import scheme to perform execution via the
RESTful services:

• Applicable for REST API: Set to True.

• Estimated Execution Time: Enter the estimated execution time for the ADIF job in minutes. The
estimated execution time will be added to the return value of the RESTful service call triggering the
execution to inform the client side about the estimated wait time until a result for the triggered ADIF
import can be expected and requested via RESTful service call.

If the ADIF import scheme is configured to import from file, the file can either be streamed with the RESTful
service call or uploaded to the Internal Document Selector of the Alfabet database prior to starting the
ADIF import via the RESTful service call.

If data shall be imported from a file the following preconditions must be met:

• Import can be performed from one or multiple files. All files required for import must be added to a
single ZIP archive.

• If the file for import shall be located in the Internal Document Selector, the option Open Items must
be activated in the Default Access Permissions attribute of the folder in the Internal Document
Selector. For information about setting the required access permissions, see Uploading Documents
and Managing User Permissions to Document Folders in the Internal Document Selector in the
reference manual User and Solution Administration.

• If the file for import shall be located in the Internal Document Selector, the file can be uploaded to
the Internal Document Selector via a RESTful service call to the idocupload endpoint.

Alternatively, documents can be uploaded via the Internal Documents functionality on
the Alfabet user interface. For information about uploading documents to the Internal
Document Selector, see Uploading Documents and Managing User Permissions to Doc-
ument Folders in the Internal Document Selector in the reference manual User and Solu-
tion Administration.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 95

ADIF import via RESTful service call is either executed asynchronously or synchronously and requires a
number of consecutive calls to the following endpoints in the given order. Details about the endpoints are
given in the following sections.

Please note that the Alfabet Web Application must be configured to connect to a running Alfabet
Server to execute ADIF jobs via the RESTful services. For more information, see the reference
manual System Administration.

1) Schedule asynchronous execution of ADIF import via a call to the adifimport endpoint. A session
token is returned.

ADIF import from a file on the local file system and ADIF import from either an external database or
from a file in the Internal Document Selector of the Alfabet database require different settings
for the call to the adifimport endpoint and are therefore described separately in the following.

2) Check the execution status for the ADIF import with the returned session token via the
adifsessionresult endpoint.

3) If the status returned by the call to the adifsessionresult endpoint is FAILED or WARNING,
check the log file of the ADIF execution via the endpoint adiflog.

The following sections inform about the required calls:

• Triggering ADIF Import from an External Database or a Document in the Alfabet Database

• Triggering ADIF Import from a File Stream in the Service Call

• Checking ADIF Execution Result Status

• Downloading the Log File for ADIF Execution

Triggering ADIF Import from an External Database or a Document in the Alfabet Da-
tabase

Endpoint name: adifimport

HTTP method: POST

Service call:

ServerAdress/api/v2/adifimport

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 96

"Scheme": "ADIFImportSchemeName",

"UserArgs": {"@AppRef":"76-2760-0"},

"ImportfileName":"IDOC:\\FolderName\\FileName.zip";

"Verbose": false

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Scheme":" ADIFImportSchemeName " Mandatory The name of the ADIF import
scheme that shall be executed.

"UserArgs":
{" arg1name ":" arg1value "," arg2name ":
" arg2value "}

Optional, only
required if
the ADIF
scheme uses
variables.

When the ADIF scheme is con-
figured to use variables, the
variables can be specified in
the field UserArgs as a JSON
object with one field for each
variable. The field name must
be identical to the variable
name and the field value de-
fines the variable value for the
current execution of the ADIF
import scheme.

"ImportFileName":"IDOC:\\ Folder-
Name\\FileName.zip"

Optional, only
required if
the data is
imported
from a file in
the Internal
Document
Selector of
the Alfabet
database.

If data shall be imported from
file, the path to the file and the
file name in the Internal Docu-
ment Selector of the Alfabet
database. The path must start
with IDOC:\ and backslashes
must be used between folder
names.

Please note the following:that

• Backslashes must be
excaped with another
backslash in JSON.

If you are including the JSON
into code when implementing a
RESTful client, further escap-
ing of the backslashes required
by JSON may be required for
code execution. You might re-
quire setting four backslashes
between folder names.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 97

Field Manda-
tory/Op-
tional

Required Value

"Verbose": true/false Optional, de-
fault is false

If this field is set to true, addi-
tional information about the
running process is logged in
the logging information in the
ALFA_ADIF_SESSION table.

NOTE: Verbose logging is in
most cases not required and
can lead to a decrease in per-
formance.

Return value:

The return value is a JSON object in the following format:

{

"Successful": true,

"SessionToken": "BA7557F7581F46609BCC338E9DBBA96E",

"EstimatedExecutionTime": 0,

"ResultMessage": "ADIF scheme has been sent to the Alfabet Server for
asynchronous execution."

}

The following information is returned:

• SessionToken: Copy this token and use it in the calls to the adifsessionresult and adiflog
endpoints to request information about the success of the ADIF import execution.

• EstimatedExecutionTime: Returns the estimated execution time in minutes defined in the ADIF
scheme. A call to the adifsessionresult or adiflog endpoints should be scheduled after the
estimated execution time only.

• Successful: Returns true if the ADIF import has been successfully scheduled for asynchronous
execution. For information about the success of the ADIF import execution itself you must send a
separate request to the adifresult endpoint.

• ResultMessage: Returns a description of the action that has been executed successfully.

• ErrorMessage: If the call fails, the return value will include information about the reason for the
failure in this field.

• ErrorCode: If the call fails, the return value will include the web server error code in this field.

Please note that trying to start an ADIF export scheme with the adifimport endpoint will fail. The error
message does not inform about the wrong type of scheme but states that the ADIF scheme is not found.
This is due to the fact that the REST API searches for the ADIF scheme name in the subset of ADIF import
schemes only and therefore the ADIF export scheme is not found.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 98

Triggering ADIF Import from a File Stream in the Service Call

Endpoint name: adifimport

HTTP method: POST

Service call:

ServerAdress/api/v2/adifimport

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: multipart/form-data; charset=utf-8;

Payload:

The payload consists of two parts:

1) A JSON object providing details about the ADIF import.

2) The content of the import ZIP file.

The way the payload is added depends on the type of client or client code.

For RESTful service client applications and object oriented programming languages, the content
is added as two separate files: a JSON file containing the JSON object and the ZIP file containing
the files for import.

For clients implemented in string oriented programming languages, the payload needs to start
and end with a delimiter defined in the Content-Type header field (Content-Type: multi-
part/form-data; charset=utf-8; delimiter: DelimiterStringNotPartOfAnyCon-
tent), and the delimiter must also be used to separate the two parts of the payload with the
JSON directly defined between the delimiters and the import ZIP file provided as file stream. The
two parts of the payload must be the following, defined in the given order:

---DelimiterStringNotPartOfAnyContent--

{

"Scheme": "ADIFImportSchemeName",

"ImportFileName": "FileName.zip",

"Verbose": true

}

---DelimiterStringNotPartOfAnyContent--

file content stream data

---DelimiterStringNotPartOfAnyContent--

The JSON may have the following fields:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 99

Field Manda-
tory/Op-
tional

Required Value

"Scheme":" ADIFImportSchemeName " Mandatory The name of the ADIF import
scheme that shall be executed.

"UserArgs":
{" arg1name ":" arg1value "," arg2name ":
" arg2value "}

Optional,
only re-
quired if
the ADIF
scheme
uses varia-
bles.

When the ADIF scheme is config-
ured to use variables, the varia-
bles can be specified in the field
UserArgs as a JSON object with
one field for each variable. The
field name must be identical to
the variable name and the field
value defines the variable value
for the current execution of the
ADIF import scheme.

"ImportFileName":" FileName.zip" Mandatory The name of the import file for
the RESTful service call.

"Verbose": true/false Optional,
default is
false.

If this field is set to true, addi-
tional information about the run-
ning process is logged in the log-
ging information in the
ALFA_ADIF_SESSION table.

NOTE: Verbose logging is in most
cases not required and can lead
to a decrease in performance.

Return value:

The return value is a JSON object in the following format:

{

"Successful": true,

"SessionToken": "BA7557F7581F46609BCC338E9DBBA96E",

"EstimatedExecutionTime": 0,

"ResultMessage": "ADIF scheme has been sent to the Alfabet Server for
asynchronous execution."

}

The following information is returned:

• SessionToken: Copy this token and use it in the calls to the adifsessionresult and adiflog
endpoints to request information about the success of the ADIF import execution.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 100

• EstimatedExecutionTime: Returns the estimated execution time in minutes defined in the ADIF
scheme. A call to the adifsessionresult or adiflog endpoints should be scheduled after the
estimated execution time only.

• Successful: Returns true if the ADIF import has been successfully scheduled for asynchronous
execution. For information about the success of the ADIF import execution itself you must send a
separate request to the adifresult endpoint.

• ResultMessage: Returns a description of the action that has been executed successfully.

• ErrorMessage: If the call fails, the return value will include information about the reason for the
failure in this field.

• ErrorCode: If the call fails, the return value will include the web server error code in this field.

Please note that trying to start an ADIF export scheme with the adifimport endpoint will fail. The error
message does not inform about the wrong type of scheme but states that the ADIF scheme is not found.
This is due to the fact that the REST API searches for the ADIF scheme name in the subset of ADIF import
schemes only and therefore the ADIF export scheme is not found.

Checking ADIF Execution Result Status

Endpoint name: adifsessionstatus

HTTP method: POST

Service call:

ServerAdress/api/v2/adifsessionstatus

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"SessionToken": "Session Token Returned via the adifimport call"

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 101

Field Manda-
tory/Op-
tional

Required Value

"SessionToken": " Session
Token Returned via the adi-
fimport call "

Mandatory The session token from the return value of the
call to the adifimport endpoint that triggered
the ADIF import execution.

Return value:

The return value is a JSON object in the following format:

{

"SessionID": "RPC_20200624182254131",

"SchemeName": "ADIF Scheme Name",

"Status": "SUCCESS",

"Start": "2020-06-24T18:22:54.183",

"EstimatedExecutionTime": 0,

"End": "2020-06-24T18:22:54.24",

"IDOCPath": "",

"IDOCFileName": "EXPORTTEST.ZIP",

"Log": true,

"Count": 0

}

The following information is returned:

• SessionID: The ID of the ADIF execution session.

• SchemeName: The name of the executed ADIF export scheme.

• EstimatedExecutionTime: Returns the estimated execution time in minutes defined in the ADIF
import scheme. A call to the adifsessionresult or adiflog endpoints should be scheduled after
the estimated execution time only.

• Status: Returns SUCCESS if the ADIF execution was successful, FAILED if an error occured during
execution, WARNING if a warning message was written to the log file during execution, and STARTED
during execution.

• Start: Returns the date and time at which the ADIF execution started.

• End: Returns the date and time at which the ADIF execution ended.

• IDOCPath: This field is not relevant.

• IDOCFileName: If data is imported from a file streamed in the RESTful service call, the file name is
returned. If data is imported from a file in the Internal Document Selector, the file name including
the path to the file in the Internal Document Selector is returned.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 102

• Log: Returns true if a log file is available. The log file can be downloaded via a call to the adiflog
endpoint.

• Count: This field is not relevant.

Downloading the Log File for ADIF Execution

Endpoint name: adiflog

HTTP method: POST

Service call:

ServerAdress/api/v2/adiflog

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"SessionToken": "Session Token Returned via the adifimport call"

}

Field Manda-
tory/Op-
tional

Required Value

"SessionToken": " Session
Token Returned via the adi-
fimport call "

Mandatory The session token from the return value of the
call to the adifimport endpoint that triggered
the ADIF import execution.

Return value:

The return value is the content of the log file.

Starting an ADIF Export via RESTful Service Call

A set of endpoints can be used to start an ADIF export based on an ADIF export scheme stored in the
Alfabet database targeted by the REST API call.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 103

The following attribute settings are required on the ADIF export scheme to perform execution via the REST-
ful services:

• Applicable for REST API: Set to True.

• Estimated Execution Time: Enter the estimated execution time for the ADIF job in minutes. The
estimated execution time will be added to return value of the RESTful service call triggering the
execution to inform the client side about the estimated wait time until a result for the triggered ADIF
export can be expected and requested via RESTful service call.

If the ADIF export scheme is configured to export to file, the generated file or files are stored in the Internal
Document Selector of the Alfabet database.

For information about the Internal Document Selector, see Uploading Documents and Manag-
ing User Permissions to Document Folders in the Internal Document Selector in the reference
manual User and Solution Administration and Making Documents and Files Available to the
Alfabet User Community in the reference manual System Administration.

ADIF export via RESTful service call is executed asynchronously and requires a number of consecutive calls
to the following endpoints in the given order. Details about the endpoints are given in the following sec-
tions.

Please note that the Alfabet Web Application must be configured to connect to a running Alfabet
Server to execute ADIF jobs via the RESTful services. For more information, see XXX in the refer-
ence manual System Administration.

1) Schedule asynchronous execution of the ADIF export via a call to the adifexport endpoint. A
session token is returned.

2) Check the execution status for the ADIF export with the returned session token via the
adifsessionresult endpoint. If ADIF export to file is executed, the return value of the call will
provide information about the location of the generated file in the Internal Document Selector.

3) If the status returned by the call to the adifsessionresult endpoint is FAILED, check the log
file of the ADIF execution via the adiflog endpoint.

4) If ADIF export to file has been successfully executed, you can download the file via the endpoint
idocdownload.

The following sections inform about the required calls:

• Triggering Asynchronous Execution of ADIF Export

• Checking ADIF Execution Result Status

• Downloading the Log File for ADIF Execution

• Downloading Documents from the Internal Document Selector

Triggering Asynchronous Execution of ADIF Export

Endpoint name: adifexport

HTTP method: POST

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 104

Service call:

ServerAdress/api/v2/adifexport

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"Scheme": "ADIFExportSchemeName",

"UserArgs": {"@AppRef":"76-2760-0"},

"Verbose": false,

}

It may have the following fields:

Field Mandatory/Optional Required Value

"Scheme":" ADIFExportSchemeName " Mandatory The name of the
ADIF export
scheme that
shall be exe-
cuted.

"UserArgs":
{" arg1name ":" arg1value "," arg2nam
e ": " arg2value "}

Optional, only required if the ADIF
scheme uses variables.

When the ADIF
scheme is con-
figured to use
variables, the
variables can be
specified in the
field UserArgs
as a JSON ob-
ject with one
field for each
variable. The
field name must
be identical to
the variable
name and the
field value de-
fines the varia-
ble value for the
current

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 105

Field Mandatory/Optional Required Value

execution of
the ADIF export
scheme.

"Verbose": true/false Optional, default is false If this field is
set to true, ad-
ditional infor-
mation about
the running
process is
logged in the
logging infor-
mation in the
ALFA_ADIF_SE
SSION table.

NOTE: Verbose
logging is in
most cases not
required and
can lead to a
decrease in
performance.

"FolderPath":"IDOC:\\FolderName" Optional, for export to file the de-
fault is IDOC:\\ADIF_SYS

If the executed
ADIF scheme is
exporting to
file, the export
result will be
stored in the In-
ternal Docu-
ment Selector
in the folder de-
fined with this
field with the
file name de-
fined in the Ex-
portFileName
field.

The path must
start with
IDOC:\ and
backslashes
must be used
between folder
names. Please
note that back-
slashes must be
escaped with
another back-
slash in JSON. If
you are includ-
ing the JSON

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 106

Field Mandatory/Optional Required Value

into code when
implementing a
RESTful client,
further escap-
ing of the back-
slashes re-
quired by JSON
may be required
for code execu-
tion. You might
require setting
four back-
slashes be-
tween folder
names.

It is not possible
to upload docu-
ments directly
into the IDOC:\
root.

"ExportFileName":"Filename.zip" Optional, the default is
<ADIFSchemeName>_<Timestamp>
.ZIP

If the executed
ADIF scheme is
exporting to
file, the export
result will be
stored in the In-
ternal Docu-
ment Selector
in the folder de-
fined in the Ex-
portFileName
field with the
file name de-
fined in this
field.

If the file al-
ready exists in
the Internal
Document Se-
lector, it will be
overwritten.

Return value:

The return value is a JSON object in the following format:

{

"ExportFile": "",

"Successful": true,

"SessionToken": "BA7557F7581F46609BCC338E9DBBA96E",

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 107

"EstimatedExecutionTime": 0,

"ResultMessage": "ADIF scheme has been sent to the Alfabet Server for
asynchronous execution."

}

The following information is returned:

• SessionToken: Copy this token and use it in the calls to the adifsessionresult and adiflog
endpoints to request information about the success of the ADIF export execution.

• EstimatedExecutionTime: Returns the estimated execution time in minutes defined in the ADIF
scheme. A call to the adifsessionresult or adiflog endpoints should be scheduled after the
estimated execution time only.

• Successful: Returns true if the ADIF export has been successfully scheduled for asynchronous
execution. For information about the success of the ADIF export execution itself you must send a
separate request to the adifresult endpoint.

• ResultMessage: Returns a description of the action that has been executed successfully.

• ExportFile: This field is not relevant.

• ErrorMessage: If the call fails, the return value will include information about the reason for the
failure in this field.

• ErrorCode: If the call fails, the return value will include the web server error code in this field.

Please note that trying to start an ADIF import scheme with the adifexport endpoint will fail. The error
message does not inform about the wrong type of scheme but states that the ADIF scheme is not found.
This is due to the fact that the REST API searches for the ADIF scheme name in the subset of ADIF export
schemes only and therefore the ADIF import scheme is not found.

Checking ADIF Execution Result Status

Endpoint name: adifsessionstatus

HTTP method: POST

Service call:

ServerAdress/api/v2/adifsessionstatus

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 108

"SessionToken": "Session Token Returned via the adifexport call"

}

Field Manda-
tory/Op-
tional

Required Value

"SessionToken": " Session
Token Returned via the
adifexport call "

Mandatory The session token from the return value of the
call to the adifexport endpoint that triggered
the ADIF export execution.

Return value:

The return value is a JSON object in the following format:

{

"SessionID": "RPC_20200624182254131",

"SchemeName": "ADIFExportSchemeName",

"Status": "SUCCESS",

"Start": "2020-06-24T18:22:54.183",

"EstimatedExecutionTime": 0,

"End": "2020-06-24T18:22:54.24",

"IDOCPath": "IDOC:\\DOCUMENTS",

"IDOCFileName": "EXPORTTEST.ZIP",

"Log": true,

"Count": 0

}

The following information is provided:

• SessionID: The ID of the ADIF execution session.

• SchemeName: The name of the executed ADIF export scheme.

• EstimatedExecutionTime: Returns the estimated execution time in minutes defined in the ADIF
scheme. A call to the adifsessionresult or adiflog endpoints should be scheduled after the
estimated execution time only.

• Status: Returns SUCCESS if the ADIF execution was successful, FAILED if an error occured during
execution, WARNING if a warning message was written to the log file during execution, and STARTED
during execution.

• Start: Returns the date and time at which the ADIF execution started.

• End: Returns the date and time at which the ADIF execution ended.

• IDOCPath: If the ADIF scheme is configured to export data to a file, the file is stored in the Internal
Document Selector of the Alfabet database. The path within the Internal Document Selector will
then be returned in this field. The information can be used together with the information returned in
the IDOCFileName field to download the results via a call to the idocdownload endpoint. For more

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 109

information about the download of the document, see Downloading Documents from the Internal
Document Selector.

• IDOCFileName: If the ADIF scheme is configured to export data to a file, the file is stored in the
Internal Document Selector of the Alfabet database. The name of the file will then be returned in
this field. The information can be used together with the information returned in the IDOCPath field
to download the results via a call to the idocdownload endpoint. For more information about the
download of the document, see Downloading Documents from the Internal Document Selector.

• Log: Returns true if a log file is available. The log file can be downloaded via a call to the adiflog
endpoint.

• Count: This field is not relevant.

Downloading the Log File for ADIF Execution

Endpoint name: adiflog

HTTP method: POST

Service call:

ServerAdress/api/v2/adiflog

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

The payload is a JSON object with the following structure:

{

"SessionToken": "Session Token Returned via the adifexport call"

}

Field Manda-
tory/Op-
tional

Required Value

"SessionToken": " Session
Token Returned via the
adifexport call "

Mandatory The session token from the return value of the
call to the adifexport endpoint that triggered
the ADIF export execution.

Return value:

The return value is the content of the log file.

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 110

Exporting Information about the Content of the Internal Document
Selector

This endpoint can be used to export information about the file content of folders in the Internal Document
Selector of the Alfabet database. Only files in one selected folder can be listed via a call to the endpoint.
Sub-folders of the selected folder and the file content thereof are not included in the list.

For information about the Internal Document Selector, see Uploading Documents and Manag-
ing User Permissions to Document Folders in the Internal Document Selector in the reference
manual User and Solution Administration and Making Documents and Files Available to the
Alfabet User Community in the reference manual System Administration.

Endpoint name: idocfilelist

HTTP method: POST

Service call:

ServerAdress/api/v2/idocfilelist

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload:

The payload is a JSON object with the following structure:

{

"Path": "IDOC:\\Folder\\Subfolder"

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Path":" Path to
folder in IDOC "

Mandatory The path to the IDOC folder the list shall be created for. The path
must start with IDOC:\ and backslashes must be used between
folder names.

Please note that backslashes must be escaped with another
backslash in JSON.

If you are including the JSON into code when implementing a
RESTful client, further escaping of the backslashes required by

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 111

Field Manda-
tory/Op-
tional

Required Value

JSON may be required for code execution. You might require
setting four backslashes between folder names.

Return value:

The return value is a JSON list of objects with one object per document that informs about the document
with the following fields:

• Path: The complete path of the document starting from the root of the Internal Document Selector.

• Name: The name of the document.

• CreationDate: The date and time the document was uploaded into the Internal Document Selector.

• DateModified: The date and time the document was last changed in the Internal Document
Selector.

• Size: The size of the document in byte.

{

"Files": [

{

"Path": "IDOC:\\Documents\\CC_Corporate_FI-CO.pdf",

"Name": "CC_Corporate_FI-CO.pdf",

"CreationDate": "2008-10-03T13:45:48.5",

"DateModified": "2010-04-04T13:45:48",

"Size": 24117

},

{

"Path": "IDOC:\\Documents\\CC_TradeWeb.pdf",

"Name": "CC_TradeWeb.pdf",

"CreationDate": "2007-08-30T13:46:09.14",

"DateModified": "2009-02-28T13:46:09",

"Size": 24892

}

]

}

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 112

Downloading Documents from the Internal Document Selector

This endpoint can be used to download files from the Internal Document Selector of the Alfabet database
or one of its sub-folders.

For information about the Internal Document Selector, see Uploading Documents and Managing
User Permissions to Document Folders in the Internal Document Selector in the reference man-
ual User and Solution Administration and Making Documents and Files Available to the Alfabet
User Community in the reference manual System Administration.

Endpoint name: idocdownload

HTTP method: POST

Service call:

ServerAdress/api/v2/idocdownload

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload:

The payload is a JSON object with the following structure:

{

"Path": "IDOC:\\Folder\\Subfolder\\FileName.FileExtension"

}

It may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"Path":" Path to
file in IDOC "

Mandatory The path to the IDOC file that shall be downloaded including the
file name. The path must start with IDOC:\ and backslashes
must be used between folder names.

Please note that backslashes must be excaped with another
backslash in JSON.

If you are including the JSON into code when implementing a
RESTful client, further escaping of the backslashes required by
JSON may be required for code execution. You might require
setting four backslashes between folder names.

Return value:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 113

The return value of the successful service call provides the downloaded file in a stream.

Uploading Documents to the Internal Document Selector

This endpoint can be used to upload a file to the Internal Document Selector of the Alfabet database or
one of its sub-folders.

For information about the Internal Document Selector, see Uploading Documents and Manag-
ing User Permissions to Document Folders in the Internal Document Selector in the reference
manual User and Solution Administration and Making Documents and Files Available to the
Alfabet User Community in the reference manual System Administration.

Upload of files into the Internal Document Selector can also be performed directly for ADIF ex-
port to file executed via the RESTful service endpoint adifexport. The exported content is then
not provided for download, but directly stored in the Internal Document Selector. For more in-
formation, see Starting an ADIF Export via RESTful Service Call.

Endpoint name: idocupload

HTTP method: POST

Service call:

ServerAdress/api/v2/idocupload

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: multipart/form-data; charset=utf-8;

Payload:

The payload consists of two parts in the given order:

1) A JSON object providing details about the storage of the file in the Internal Document Selector.

2) The file to be uploaded.

The way the payload is added depends on the type of client or client code.

For RESTful service client applications and object oriented programming languages, the content
is added as two separate files: a JSON file containing the JSON object and the ZIP file containing
the files for importfile for upload.

For clients implemented in string oriented programming languages, the payload needs to start
and end with a delimiter defined in the Content-Type header field (Content-Type: multi-
part/form-data; charset=utf-8; delimiter: DelimiterStringNotPartOfAnyCon-
tent), and the delimiter must also be used to separate the two parts of the payload with the
JSON directly defined between the delimiters and the import data provided as file stream. The
two parts of the payload must be the following, defined in the given order:

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 114

---DelimiterStringNotPartOfAnyContent--

{

"FolderPath": "IDOC:\\ImportFolder",

"Name": "UploadFile.pdf",

""OverwriteExistingFile": true

}

---DelimiterStringNotPartOfAnyContent--

file content stream data

---DelimiterStringNotPartOfAnyContent--

The JSON may have the following fields:

Field Manda-
tory/Op-
tional

Required Value

"FolderPath":" Path
to folder in IDOC "

Mandatory The path to the IDOC folder the file should be uploaded to. The
path must start with IDOC:\ and backslashes must be used be-
tween folder names.

Please note the following:that

• Backslashes must be excaped with another backslash in
JSON.

If you are including the JSON into code when implementing a
RESTful client, further escaping of the backslashes required by
JSON may be required for code execution. You might require
setting four backslashes between folder names.

• It is not possible to upload files to the IDOC: root.

• The file name in the internal document selector does not
have to be identical with the name of the file that is
uploaded.

"Name":" File-
Name.FileExten-
tion "

Mandatory The name of the file that shall be created in IDOC. The name
does not have to be identical to the name of the file providing
the content for upload. The file extension must match the up-
loaded content.

Please note that the upload will fail if a file with the same name
already exists in the defined Internal Document Selector folder
and the field OverwriteExistingFile is missing or set to
false.

"OverwriteExisting-
File":true|false

Optional If this field is set to true, an existing file with the same name in
the same folder of the Internal Document Selector will be over-
written by the uploaded file. If set to false, an existing file can-
not be overwritten and upload will fail if a file with the same

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 115

Field Manda-
tory/Op-
tional

Required Value

name already exists in the defined Internal Document Selector
folder. The default value is false.

Return value:

If the upload is successful, the return value will be a JSON object returning the IDOC ID if the uploaded doc-
ument in a field IDocID.

Checking Whether the Alfabet components are Running

This endpoint can be used to check whether the Alfabet components that might be involved in the execu-
tion of a RESTful service request are running and can be accessed. The service call checks the availability
of the following components:

• The Alfabet Web Application.

• The database server hosting the Alfabet database,

• If the server alias of the Alfabet Web Application is configured to connect to an Alfabet Server, the
availability of that Alfabet Server is checked.

Endpoint name: monitor

HTTP method: GET

Service call:

ServerAdress/api/monitor

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: application/json; charset=utf-8

Payload

No payload required.

Return value:

The return value is a JSON object that informs about the availability of the components.

For example:

{

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 116

"Name": "Alfabet WebApplication",

"State": "Error",

"Reason": "Alfabet WebApplication is running Database is running
Alfabet Application Server error: Unable to connect to the
application server. Check the network connections and resources.
Contact your administrator."

}

Updating the Meta-Model

This endpoint can be used to update the Alfabet meta-model in the target database with a meta-model
configuration stored in an AMM file.

For information about the creation of AMM files and the update of the meta-model, see Applying
Configuration Changes to Other Databases in the reference manual Configuring Alfabet with
Alfabet Expand.

Please note that the Alfabet Web Application must be configured to connect to a running Alfabet
Server to execute ADIF jobs via the RESTful services. For more information, see XXX in the refer-
ence manual System Administration.

Endpoint name: updateMM

HTTP method: POST

Service call:

ServerAdress/api/v2/updateMM

Header Fields:

Authorization:TypeValue

For information about the required Authorization header content, see Authorization.

Content-Type: multipart/form-data; charset=utf-8;

Payload:

The content of the AMM file.

The way the payload is added depends on the type of client or client code.

For RESTful service client applications and object oriented programming languages, the content
is added as two separate files: a JSON file containing the JSON object and the AMM file.

For clients implemented in string oriented programming languages, the payload needs to start
and end with a delimiter defined in the Content-Type header field (Content-Type: multi-
part/form-data; charset=utf-8; delimiter: DelimiterStringNotPartOfAnyCon-
tent), and the delimiter must also be used to separate the two parts of the payload with the

 Chapter 6: Service Calls and Return Values

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 117

JSON directly defined between the delimiters and the AMM file provided as file stream. The two
parts of the payload must be the following, defined in the given order:

---DelimiterStringNotPartOfAnyContent--

{

???

"Name": "FileName.amm",

"Verbose": true

}

---DelimiterStringNotPartOfAnyContent--

file content stream data

---DelimiterStringNotPartOfAnyContent--

Return value:

The return value is a JSON object in the following format:

{

"ResultMessage": "Configuration File has been sent to the Alfabet Server for
update.",

"Log": "",

}

The following information is returned:

• ResultMessage: Informs about the success of the service call. The service call hands over the AMM
file to the Alfabet Server. The update of the meta-model is then performed by the Alfabet Server
following the RESTful service call.

• Log: This field is not relevant.

 Chapter 7: Accessing the Alfabet User Interface From the External Application

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 118

Chapter 7: Accessing the Alfabet User Interface From the Exter-
nal Application

The Alfabet RESTful API provides access to data in the Alfabet database to external applications processing
the data. If the external application should also provide links to the Alfabet user interface to its users, links
opening defined views of the Alfabet user interface can be defined using a special link syntax. The links
point to either an object profile, object cockpit, or graphic view for a specified object. In the link, the REFSTR
value of the object for that the view is opened must be provided. The REFSTR value of a relevant object can
be requested via the Alfabet RESTful API in order to build the link. The endpoint objects can deliver a list
of REFSTR values for all objects found via a query in a configured Alfabet report.

The required link syntax and the access rights that apply for links to the Alfabet user interface from exter-
nal applications are described in detail in the section Links to Alfabet Views from External Applications in
the reference manual System Administration.

 Chapter 8: Testing the Alfabet RESTful API

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 119

Chapter 8: Testing the Alfabet RESTful API

For first tests of the Alfabet RESTful API, requests can be sent via a commercial REST client like Google's
Advanced REST client or a Swagger editor.

For both the tests via a commercial REST client or tests of customer developed REST clients, tests for ser-
vice calls for the endpoint update should only be performed on Alfabet test databases and not on the pro-
ductive Alfabet database.

This chapter provides information about how to perform a simple test of a service call and how to interpret
error codes that you might see during testing:

• Testing the Alfabet RESTful API

• Configurations Required to Use a Swagger Editor for Testing

Testing the Alfabet RESTful API

You can use commercially available REST clients for simple tests of service calls to the Alfabet RESTful API.
This does not require any addition configurations except for Swagger editors.

Configurations Required to Use a Swagger Editor for Testing

A Swagger editor can be used for testing. To view all calls in ready-to-use Swagger format, the Alfabet
RESTful services and the Web browser must be configured as follows:

1) Open the Alfabet Administrator.

2) Click the Alfabet Aliases node in the explorer. A workspace with a toolbar opens.

3) In the toolbar, click Tools > Configure alfabet.config. An editor opens.

4) Click the Browse button on the right of the Web Folder field and select the main directory of
the Alfabet Web Application from the directory browser. The alfabet.config file in the
subdirectory config of the selected directory opens in the editor.

5) Add the following code as child element of the alfaSection XML element, substituting
WebApplicationFolderPath with the absolute path to the virtual directory of the Alfabet Web
Application:

<add key="SwaggerSpecFileName"
value="WebApplicationFolderPath\SwaggerSpec\AlfabetWeb5_SwaggerSpec.json"
/>

6) Click Save. The change is saved and the editor is closed.

7) Close the Alfabet Administrator.

8) Go to the URL http:// URLOfTheALfabetWebApplication /swagger/docs/v2 and copy the
JSON code that is displayed.

9) Open your Swagger editor and paste the JSON code into the editor code field.

10) Make sure that Cross Origin Resource Sharing is enabled on your browser.

 Chapter 8: Testing the Alfabet RESTful API

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 120

The header: Access-Control-Allow-Origin: * must be included in the calls generated by
the Sever. Enabling Cross Origin Resource Sharing in the browser is a simple way of
achieving this if not otherwise implemented in the system.

 Chapter 9: Checking Success of Service Calls to the Alfabet RESTful Api

Alfabet 10.13 ©2022 Software AG. All rights reserved. Reference Manual 121

Chapter 9: Checking Success of Service Calls to the Alfabet
RESTful Api

The return value for service call of the RESTful services informs about the success of the service call. If an
error occures, the error message informs about the reason for the failure of the call. The error messages are
handed over in a JSON object with two fields:

• ErrorMessage: Information about the reason for the failure.

• ErrorCode: The web server error code.

For security reasons, the error messages delivered back to the REST client are not very detailed. In addi-
tions, service calls that trigger activity like ADIF execution asynchronously will only inform about the suc-
cessful triggering of the process without giving information about the success of the execution of the ADIF
job. The execution of processes triggered via the RESTful services can also be logged by the Alfabet Web
Application for synchronous process or by the Alfabet Server for asynchronous processes.

The configuration of the Alfabet components to write log information to a central log file or to send it to an
external log server is described in the section Central Logging of Functionality for Alfabet Components in
the reference manual System Administration.

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 122

INDEX

access permission

object class 21

overview 27

per mandate 24

per object 25

user 17

access permissions

ADIF scheme 20

configured report 20

Internal Document Selector 20

workflow 20

activation 9

ADIF export

start 102

ADIF import

start 94

ADIF scheme

enabling for REST API 20

adifexport endpoint 102

adifimport endpoint 94

Alfabet components

monitoring health 115

Alfabet metamodel

reading culture settings 38

reading enumerations 46

reading object class model 38, 43

Alfabet object

archiving 86

archiving and deleting 86

changing data 76

creating 76, 79

creating reference 85

creating relation 85

deleting 74

reading data 48

updating property values 82

Alfabet user

anonymizing 91

regenerating password 89

Alfabet user interface 118

Alfabet.config

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 123

JSON Web Token 10

max_api_requests_per_second 10

Allow Read via Rest API 21

Allow Write via Rest API 21

anonymizeuser endpoint 91

API Access Options 17

API Culture 32

Applicable for REST API 20

archiveobject endpoint

HTTP method 86

JSON body 86

return value 86

service call 86

authentication

Web server 12

authorization

API access options 17

client side 26

request 16

token request 26

user key 16

user password 16

availability check

Alfabet Components 115

blacklist 20

changing object data 82

class key

reading from metamodel 38

reading metamodel structure 43

class setting

REST access permission 21

classes endpoint

HTTP method 43

parameter 43

return value 43

service call 43

configured report

enabling for REST API 20

for endpoint objects 60

creating objects

update endpoint 79

creating relations

update endpoint 85

culture

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 124

reading object data for culture 48

culture settings

reading from metamodel 38

database object

archiving 86

archiving and deleting 86

deleting 74

reading data 48

date format 32

delete endpoint

HTTP method 74

JSON body 74

return value 74

service call 74

document

download 112

list 110

upload 113

download

internal document selector 112

empty values

including in enums endpoint 46

including in metamodel endpoint 38, 43

emptyvalues parameter

for endpoint classes 43

for endpoint enums 46

for endpoint metamodel 38

Enable REST API v2 13

endpoint

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 125

adifexport 102

adifimport 94

anonymizeuser 91

archiveobject 86

classes 43

delete 74

enums 46

idocdownload 112

idocfilelist 110

idocupload 113

metamodel 38

monitor 115

objects 48

regeneratepassword 89

token 26

update 76

Versions 8

workflow 93

enumeration

reading metamodel structure 46

enums endpoint

HTTP method 46

parameter 46

return value 46

service call 46

file list

internal document selector 110

Generate API Password 17

Google Advanced REST Client 119

Has API V2 Access 17

health monitoring

Alfabet components 115

Http Header

authorization 16

HTTP method

archiveobject endpoint 86

classes endpoint 43

delete endpoint 74

enums endpoint 46

metamodel endpoint 38

objects endpoint 48

regeneratepassword endpoint 89

update endpoint 76

IDOC see Internal Document Selector

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 126

download file 112

file list 110

upload file 113

idocdownload endpoint 112

idocfilelist endpoint 110

idocupload endpoint 113

Internal Document Selector

access permissions 20

download file 112

read content 110

upload file 113

JSON format

for creating relations 85

for updating object data 82

in service call for update endpoint 79, 82, 85

return value 35

JSON request

for creating new objects 79

JSON Web Token 10

key 16

licenses 8

limit

requests per second 10

link

to Alfabet user interface 118

logging

REST service calls 121

mandate 24

max_api_requests_per_second 10

Maximum number of requests per second

changing 10

metamodel endpoint

HTTP method 38

parameter 38

return value 38

service call 38

names parameter

for endpoint classes 43

for endpoint enums 46

object

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 127

archiving 86

archiving and deleting 86

creating 76

deleting 74

reading data for object 48

object class

reading metamodel structure 38, 43

object class property

type ReferenceArray 85

object class

changing object data 76

creating new object 79

creating object 76

updating property values 82

object class property

changing for object 76

mandatory for new object 79

reading from metamodel 38

reading metamodel structure 43

object data

exporting by report query 59

exporting for objects by filter 54

exporting for objects by REFSTR 49

exporting via query 60

reading 48

reading different language versions 48

object in Alfabet Database

archiving 86

archiving and deleting 86

changing data 76

creating 79

creating reference 85

creating relation 85

deleting 74

reading data 48

updating property values 82

object REFSTR

exporting by report query 59

objects endpoint

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 128

HTTP method 48

objects by filter 54

objects by references 49

objects by report 59

parameter 48

return value 48

service call 48

parameter

emptyvalues 38, 43, 46

names 43, 46

password 16

regenerating for user 89

permission see access permission

Read permission 21

ReadWrite permission 21

Reference

deleting 74

ReferenceArray 85

regeneratepassword endpoint

HTTP method 89

JSON body 89

return value 89

service call 89

relation

creating between objects 85

deleting 74

RELATIONS table

deleting entry 74

request

limit 10

requirements see technical requirements

resetting

user password 89

REST client

for testing 119

RESTful service call

limit for incoming 10

return value

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 129

adifexport 102

adifimport 94

containing object property values 49, 54, 71

containing REFSTR list 73

containing report content 71

for endpoint enums 46

for endpoint metamodel 38, 43

for endpoint objects 48

for endpoint update 79, 85

idocdownload 112

idocfilelist 110

idocupload 113

monitor 115

objects by filter 54

objects by references 49

objects by report 59

objects endpoint 48

RESULT object 35

workflow 93

Server Alias

enable REST API 13

server roles 11

service call

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 130

adifexport 102

adifimport 94

anonymizeuser endpoint 91

archiveobject endpoint 86

authorization 26

classes endpoint 43

date format 32

delete endpoint 74

enums endpoint 46

executing configured report 62

idocdownload 112

idocfilelist 110

idocupload 113

logging 121

metamodel endpoint 38

monitor 115

objects by filter 54

objects by references 49

objects by report 59

objects endpoint 48

regenerate password endpoint 89

return value 35

syntax 35

time format 32

update endpoint 76

workflow 93

session cookies 6

Swagger 119

technical requirements

configuration 9

licenses 8

Web server 11

time format 32

token 16, 26

update endpoint

creating new objects 79

creating relations 85

HTTP method 76

JSON body 76

return value 76

service call 76

updating object data 82

updating objects

update endpoint 82

upload

 Index

Alfabet 10.9 ©2021 Software AG. All rights reserved. Reference Manual 131

internal document selector 113

user

access permission 17

anonymizing 91

regenerating password 89

user based authorization see authorization

user editor

REST API settings 17

user password 16

user profile

REST access permission 21

view scheme

REST access permission 21

Web server

authentication 12

Requirements 11

server roles 11

WebDAV 11

web.config

handlers for RESTful services 9

WebDAV 11

whitelist 20

workflow

start 93

workflow endpoint 93

workflow template

enabling for REST API 20

Write permission 21

	Chapter 1: Introduction
	Chapter 2: Required Licenses
	Chapter 3: Activating the Alfabet RESTful API on Server Side
	Enable the Alfabet RESTful API in the web.config Files of the Alfabet Web Application
	Configure the Web Server Hosting the Alfabet Web Application to Enable the Alfabet RESTful API
	Disable the WebDAV module of the Internet Information Services
	Setting the Required Authorization for the api folder

	Configuring the Server Alias of the Alfabet Web Application to Enable REST API calls

	Chapter 4: Authorization
	Required Configuration on Server Side
	Generating a REST API Password for a User
	Enabling Reports, ADIF Schemes, and Workflow Templates to be Executed via RESTful Service Calls
	Enabling Access to Folders in the Internal Document Selector
	Configuring Per Object Class Permissions for Reading From or Writing Into the Alfabet database
	Controlling Access Via Mandates
	Controlling Access Per Object via Access Permission Concepts

	Required Implementation on Client Side
	Overview of Access Permissions Required for Each Endpoint

	Chapter 5: Configuring Handling of Date, Time and Number Formats For API Calls
	Configuring a New API Culture
	Using an API Culture in a Service Call

	Chapter 6: Service Calls and Return Values
	Exporting Information about the Complete Alfabet Class Model Including Enumerations and Culture Settings
	Exporting Information about All or Multiple Classes of the Alfabet Class Model
	Exporting Information about All or Multiple Enumerations in the Alfabet Class Model
	Exporting Information About Object Data Stored in the Alfabet database
	Exporting Data About Objects with Defined REFSTR Values
	Exporting Data About Objects Of a Defined Object Class Matching A Filter Definition
	Exporting Information About Objects Found By A Configured Report
	Configuring a Report that Can be Called in a RESTful Service Request
	Service Call for Direct Execution of a Configured Report
	Service Calls for Execution of Offline Executed Reports
	Service Call for Triggering Offline Execution
	Checking the Status of the Asynchronous Report Execution
	Exporting Results from Asynchronous Report Execution

	Return Value for the ReportResultDataSet Asynchronous Report Execution Returning the Data Defined In the Report
	Return Value for the ReportResultObjects Returning All Properties of the Objects Found in the Report
	Return Value for the ReportResult Returning the REFSTR of the Objects Found in the Report

	Deleting Objects from the Alfabet database
	Creating and Updating Object Data in the Alfabet database
	Creating a new Object in the Alfabet database
	Changing the Properties of an existing Object in the Alfabet database
	Creating or Updating a Relation Between Objects in the Alfabet database

	Archiving Objects from the Alfabet database
	Regenerating the Password of an Alfabet User
	Anonymizing User Data For Selected Users
	Starting a Workflow via RESTful Service Call
	Starting an ADIF Import via RESTful Service Call
	Triggering ADIF Import from an External Database or a Document in the Alfabet Database
	Triggering ADIF Import from a File Stream in the Service Call
	Checking ADIF Execution Result Status
	Downloading the Log File for ADIF Execution

	Starting an ADIF Export via RESTful Service Call
	Triggering Asynchronous Execution of ADIF Export
	Checking ADIF Execution Result Status
	Downloading the Log File for ADIF Execution

	Exporting Information about the Content of the Internal Document Selector
	Downloading Documents from the Internal Document Selector
	Uploading Documents to the Internal Document Selector
	Checking Whether the Alfabet components are Running
	Updating the Meta-Model

	Chapter 7: Accessing the Alfabet User Interface From the External Application
	Chapter 8: Testing the Alfabet RESTful API
	Testing the Alfabet RESTful API
	Configurations Required to Use a Swagger Editor for Testing

	Chapter 9: Checking Success of Service Calls to the Alfabet RESTful Api

